Noah Pearson , Gregory M. Boiczyk , William J. Anderl , Michele Marino , S. Michael Yu , Kenneth L. Monson
{"title":"脑动脉的弹性和粘弹性软化与过伸率无关","authors":"Noah Pearson , Gregory M. Boiczyk , William J. Anderl , Michele Marino , S. Michael Yu , Kenneth L. Monson","doi":"10.1016/j.jmbbm.2025.106957","DOIUrl":null,"url":null,"abstract":"<div><div>Collagenous soft tissues are frequently injured by supraphysiologic mechanical deformation, leading to measurable changes in both extra-cellular matrix (ECM) structure and mechanical properties. While each of these alterations has been well studied following quasi-static deformation, little is known about the influence of high strain rate. Previous investigations of high-rate ECM alterations found tropocollagen denaturation and fibrillar kinking to be rate dependent. Given these observations of rate dependence in microstructure alterations, the present work evaluated if the rate and magnitude of overstretch affect the baseline viscoelastic properties of porcine middle cerebral arteries (MCAs). Changes in tissue response were assessed using a series of harmonic oscillations before and after sub-failure overstretches across a large range of rates and magnitudes. We used collagen-hybridizing peptide (CHP) to evaluate the role of tropocollagen denaturation in mechanical softening. Experiments show that softening is dependent on overstretch magnitude but is independent of overstretch rate. We also note that softening progresses at the same rate for both equilibrium (quasi-static) and non-equilibrium (high-rate) properties. Finally, results suggest that tropocollagen denaturation is not the source of the observed sub-yield softening behavior. This study expands fundamental knowledge on the form-function relationship of constituents in collagen fibrils and clarifies material behavior following sub-failure overstretch across a range of strain rates.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"166 ","pages":"Article 106957"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Softening of elastic and viscoelastic properties is independent of overstretch rate in cerebral arteries\",\"authors\":\"Noah Pearson , Gregory M. Boiczyk , William J. Anderl , Michele Marino , S. Michael Yu , Kenneth L. Monson\",\"doi\":\"10.1016/j.jmbbm.2025.106957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Collagenous soft tissues are frequently injured by supraphysiologic mechanical deformation, leading to measurable changes in both extra-cellular matrix (ECM) structure and mechanical properties. While each of these alterations has been well studied following quasi-static deformation, little is known about the influence of high strain rate. Previous investigations of high-rate ECM alterations found tropocollagen denaturation and fibrillar kinking to be rate dependent. Given these observations of rate dependence in microstructure alterations, the present work evaluated if the rate and magnitude of overstretch affect the baseline viscoelastic properties of porcine middle cerebral arteries (MCAs). Changes in tissue response were assessed using a series of harmonic oscillations before and after sub-failure overstretches across a large range of rates and magnitudes. We used collagen-hybridizing peptide (CHP) to evaluate the role of tropocollagen denaturation in mechanical softening. Experiments show that softening is dependent on overstretch magnitude but is independent of overstretch rate. We also note that softening progresses at the same rate for both equilibrium (quasi-static) and non-equilibrium (high-rate) properties. Finally, results suggest that tropocollagen denaturation is not the source of the observed sub-yield softening behavior. This study expands fundamental knowledge on the form-function relationship of constituents in collagen fibrils and clarifies material behavior following sub-failure overstretch across a range of strain rates.</div></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":\"166 \",\"pages\":\"Article 106957\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751616125000736\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616125000736","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Softening of elastic and viscoelastic properties is independent of overstretch rate in cerebral arteries
Collagenous soft tissues are frequently injured by supraphysiologic mechanical deformation, leading to measurable changes in both extra-cellular matrix (ECM) structure and mechanical properties. While each of these alterations has been well studied following quasi-static deformation, little is known about the influence of high strain rate. Previous investigations of high-rate ECM alterations found tropocollagen denaturation and fibrillar kinking to be rate dependent. Given these observations of rate dependence in microstructure alterations, the present work evaluated if the rate and magnitude of overstretch affect the baseline viscoelastic properties of porcine middle cerebral arteries (MCAs). Changes in tissue response were assessed using a series of harmonic oscillations before and after sub-failure overstretches across a large range of rates and magnitudes. We used collagen-hybridizing peptide (CHP) to evaluate the role of tropocollagen denaturation in mechanical softening. Experiments show that softening is dependent on overstretch magnitude but is independent of overstretch rate. We also note that softening progresses at the same rate for both equilibrium (quasi-static) and non-equilibrium (high-rate) properties. Finally, results suggest that tropocollagen denaturation is not the source of the observed sub-yield softening behavior. This study expands fundamental knowledge on the form-function relationship of constituents in collagen fibrils and clarifies material behavior following sub-failure overstretch across a range of strain rates.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.