展示摊牌游戏中无限旋转的纳什均衡

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
L. Bayón , P. Fortuy Ayuso , J.M. Grau , A.M. Oller-Marcén , M.M. Ruiz
{"title":"展示摊牌游戏中无限旋转的纳什均衡","authors":"L. Bayón ,&nbsp;P. Fortuy Ayuso ,&nbsp;J.M. Grau ,&nbsp;A.M. Oller-Marcén ,&nbsp;M.M. Ruiz","doi":"10.1016/j.amc.2025.129368","DOIUrl":null,"url":null,"abstract":"<div><div>The game of <em>Showcase Showdown</em> with unlimited spins is investigated as an <em>n</em>-players continuous game, and the Nash Equilibrium strategies for the players are obtained. The sequential game with information on the results of the previous players is studied, as well as three variants: no information, possibility of draw, and different modalities of winner payoff.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"497 ","pages":"Article 129368"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nash equilibria in the Showcase Showdown game with unlimited spins\",\"authors\":\"L. Bayón ,&nbsp;P. Fortuy Ayuso ,&nbsp;J.M. Grau ,&nbsp;A.M. Oller-Marcén ,&nbsp;M.M. Ruiz\",\"doi\":\"10.1016/j.amc.2025.129368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The game of <em>Showcase Showdown</em> with unlimited spins is investigated as an <em>n</em>-players continuous game, and the Nash Equilibrium strategies for the players are obtained. The sequential game with information on the results of the previous players is studied, as well as three variants: no information, possibility of draw, and different modalities of winner payoff.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"497 \",\"pages\":\"Article 129368\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325000955\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325000955","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

将无限旋转的Showcase摊牌博弈作为n人连续博弈进行研究,得到了参与人的纳什均衡策略。研究了具有前一玩家结果信息的连续游戏,以及三种变体:无信息,平局的可能性和赢家回报的不同模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nash equilibria in the Showcase Showdown game with unlimited spins
The game of Showcase Showdown with unlimited spins is investigated as an n-players continuous game, and the Nash Equilibrium strategies for the players are obtained. The sequential game with information on the results of the previous players is studied, as well as three variants: no information, possibility of draw, and different modalities of winner payoff.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信