基于ZnO/Al2O3和ZnO/ZnAl2O4单纳米线的氢纳米传感器

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Cristian Lupan , Niklas Kohlmann , Deik Petersen , Mani Teja Bodduluri , Artur Buzdugan , Justin Jetter , Eckhard Quandt , Lorenz Kienle , Rainer Adelung , Oleg Lupan
{"title":"基于ZnO/Al2O3和ZnO/ZnAl2O4单纳米线的氢纳米传感器","authors":"Cristian Lupan ,&nbsp;Niklas Kohlmann ,&nbsp;Deik Petersen ,&nbsp;Mani Teja Bodduluri ,&nbsp;Artur Buzdugan ,&nbsp;Justin Jetter ,&nbsp;Eckhard Quandt ,&nbsp;Lorenz Kienle ,&nbsp;Rainer Adelung ,&nbsp;Oleg Lupan","doi":"10.1016/j.mtnano.2025.100596","DOIUrl":null,"url":null,"abstract":"<div><div>With the increase in cost of natural gas as well as its environmental impact, an alternative energy source like hydrogen is a promising way to lower costs and saturate the growing demand for green energy. Unfortunately, leaks of hydrogen gas are difficult to detect because of its intrinsic properties, meaning that new solid-state portable devices that reliably detect hydrogen gas in short time are needed. In this study we report on the morphological, structural, chemical, and sensor properties of nanostructures and nanodevices subjected to hydrogen gas and other volatile compounds based on core/shell ZnO/Al<sub>2</sub>O<sub>3</sub> and ZnO/ZnAl<sub>2</sub>O<sub>4</sub> nanowires in dependence of annealing temperature and shell thickness. At an annealing temperature of 975 °C crystallization of the alumina shell forming the ternary ZnAl<sub>2</sub>O<sub>4</sub> spinel-type phase was confirmed by TEM, HRTEM and XRD studies. The spinel phase provides high thermal, chemical and structural stability to the nanosensor. Core/shell ZnO/Al<sub>2</sub>O<sub>3</sub> or ZnO/ZnAl<sub>2</sub>O<sub>4</sub> nanowires were integrated into devices for gas sensing using a FIB/SEM system. Nanosensors based on single ZnO/ZnAl<sub>2</sub>O<sub>4</sub> nanowire with a shell thickness of 5 nm showed the most promising results to the detection of hydrogen gas with an operating temperature down to room temperature, obtaining a response value of about 5 and a response value of ∼2411 at an operating temperature of 125 °C. The sensors maintained high response values and selectivity to H<sub>2</sub> at all investigated operating temperatures even after 2 years of storage.</div><div>The mechanism of hydrogen sensing of the core/shell ZnO/Al<sub>2</sub>O<sub>3</sub> or ZnO/ZnAl<sub>2</sub>O<sub>4</sub> nanowire-based sensors was proposed to be electron transport, which is controlled by the depletion region at the interface between the core and the shell. Devices based on ZnO/Al<sub>2</sub>O<sub>3</sub> and ZnO/ZnAl<sub>2</sub>O<sub>4</sub> nanowire show promising results for future hydrogen gas sensing applications in industrial or biomedical fields. Further optimization of hydrogen nanosensors, utilizing core/shell geometries fabricated using the methods and materials presented here is envisioned building on the insights gained.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"29 ","pages":"Article 100596"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen nanosensors based on core/shell ZnO/Al2O3 and ZnO/ZnAl2O4 single nanowires\",\"authors\":\"Cristian Lupan ,&nbsp;Niklas Kohlmann ,&nbsp;Deik Petersen ,&nbsp;Mani Teja Bodduluri ,&nbsp;Artur Buzdugan ,&nbsp;Justin Jetter ,&nbsp;Eckhard Quandt ,&nbsp;Lorenz Kienle ,&nbsp;Rainer Adelung ,&nbsp;Oleg Lupan\",\"doi\":\"10.1016/j.mtnano.2025.100596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the increase in cost of natural gas as well as its environmental impact, an alternative energy source like hydrogen is a promising way to lower costs and saturate the growing demand for green energy. Unfortunately, leaks of hydrogen gas are difficult to detect because of its intrinsic properties, meaning that new solid-state portable devices that reliably detect hydrogen gas in short time are needed. In this study we report on the morphological, structural, chemical, and sensor properties of nanostructures and nanodevices subjected to hydrogen gas and other volatile compounds based on core/shell ZnO/Al<sub>2</sub>O<sub>3</sub> and ZnO/ZnAl<sub>2</sub>O<sub>4</sub> nanowires in dependence of annealing temperature and shell thickness. At an annealing temperature of 975 °C crystallization of the alumina shell forming the ternary ZnAl<sub>2</sub>O<sub>4</sub> spinel-type phase was confirmed by TEM, HRTEM and XRD studies. The spinel phase provides high thermal, chemical and structural stability to the nanosensor. Core/shell ZnO/Al<sub>2</sub>O<sub>3</sub> or ZnO/ZnAl<sub>2</sub>O<sub>4</sub> nanowires were integrated into devices for gas sensing using a FIB/SEM system. Nanosensors based on single ZnO/ZnAl<sub>2</sub>O<sub>4</sub> nanowire with a shell thickness of 5 nm showed the most promising results to the detection of hydrogen gas with an operating temperature down to room temperature, obtaining a response value of about 5 and a response value of ∼2411 at an operating temperature of 125 °C. The sensors maintained high response values and selectivity to H<sub>2</sub> at all investigated operating temperatures even after 2 years of storage.</div><div>The mechanism of hydrogen sensing of the core/shell ZnO/Al<sub>2</sub>O<sub>3</sub> or ZnO/ZnAl<sub>2</sub>O<sub>4</sub> nanowire-based sensors was proposed to be electron transport, which is controlled by the depletion region at the interface between the core and the shell. Devices based on ZnO/Al<sub>2</sub>O<sub>3</sub> and ZnO/ZnAl<sub>2</sub>O<sub>4</sub> nanowire show promising results for future hydrogen gas sensing applications in industrial or biomedical fields. Further optimization of hydrogen nanosensors, utilizing core/shell geometries fabricated using the methods and materials presented here is envisioned building on the insights gained.</div></div>\",\"PeriodicalId\":48517,\"journal\":{\"name\":\"Materials Today Nano\",\"volume\":\"29 \",\"pages\":\"Article 100596\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588842025000276\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842025000276","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着天然气成本的增加及其对环境的影响,像氢这样的替代能源是降低成本和满足日益增长的绿色能源需求的一种有希望的方式。不幸的是,由于氢气的固有特性,很难检测到氢气的泄漏,这意味着需要在短时间内可靠地检测氢气的新型固态便携式设备。在这项研究中,我们报道了基于ZnO/Al2O3和ZnO/ZnAl2O4纳米线的纳米结构和纳米器件在氢气和其他挥发性化合物作用下的形态、结构、化学和传感器性能与退火温度和壳层厚度的关系。在975℃的退火温度下,通过TEM、HRTEM和XRD研究证实了氧化铝壳的结晶形成了尖晶石型三元ZnAl2O4相。尖晶石相为纳米传感器提供了高的热稳定性、化学稳定性和结构稳定性。采用FIB/SEM系统将ZnO/Al2O3或ZnO/ZnAl2O4纳米线集成到气敏器件中。基于壳厚为5 nm的单ZnO/ZnAl2O4纳米线的纳米传感器在工作温度降至室温时的氢气检测中表现出最有希望的结果,在125℃的工作温度下,响应值约为5,响应值为~ 2411。即使在储存2年后,传感器在所有研究的工作温度下仍保持高响应值和对H2的选择性。提出了基于ZnO/Al2O3或ZnO/ZnAl2O4纳米线的传感器的氢传感机制为电子传递,该机制受核心和壳层界面的耗尽区控制。基于ZnO/Al2O3和ZnO/ZnAl2O4纳米线的器件在未来的工业或生物医学领域的氢气传感应用中显示出有希望的结果。进一步优化氢纳米传感器,利用使用本文提出的方法和材料制造的核/壳几何结构,设想建立在获得的见解的基础上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hydrogen nanosensors based on core/shell ZnO/Al2O3 and ZnO/ZnAl2O4 single nanowires

Hydrogen nanosensors based on core/shell ZnO/Al2O3 and ZnO/ZnAl2O4 single nanowires
With the increase in cost of natural gas as well as its environmental impact, an alternative energy source like hydrogen is a promising way to lower costs and saturate the growing demand for green energy. Unfortunately, leaks of hydrogen gas are difficult to detect because of its intrinsic properties, meaning that new solid-state portable devices that reliably detect hydrogen gas in short time are needed. In this study we report on the morphological, structural, chemical, and sensor properties of nanostructures and nanodevices subjected to hydrogen gas and other volatile compounds based on core/shell ZnO/Al2O3 and ZnO/ZnAl2O4 nanowires in dependence of annealing temperature and shell thickness. At an annealing temperature of 975 °C crystallization of the alumina shell forming the ternary ZnAl2O4 spinel-type phase was confirmed by TEM, HRTEM and XRD studies. The spinel phase provides high thermal, chemical and structural stability to the nanosensor. Core/shell ZnO/Al2O3 or ZnO/ZnAl2O4 nanowires were integrated into devices for gas sensing using a FIB/SEM system. Nanosensors based on single ZnO/ZnAl2O4 nanowire with a shell thickness of 5 nm showed the most promising results to the detection of hydrogen gas with an operating temperature down to room temperature, obtaining a response value of about 5 and a response value of ∼2411 at an operating temperature of 125 °C. The sensors maintained high response values and selectivity to H2 at all investigated operating temperatures even after 2 years of storage.
The mechanism of hydrogen sensing of the core/shell ZnO/Al2O3 or ZnO/ZnAl2O4 nanowire-based sensors was proposed to be electron transport, which is controlled by the depletion region at the interface between the core and the shell. Devices based on ZnO/Al2O3 and ZnO/ZnAl2O4 nanowire show promising results for future hydrogen gas sensing applications in industrial or biomedical fields. Further optimization of hydrogen nanosensors, utilizing core/shell geometries fabricated using the methods and materials presented here is envisioned building on the insights gained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.30
自引率
3.90%
发文量
130
审稿时长
31 days
期刊介绍: Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to: Nanoscale synthesis and assembly Nanoscale characterization Nanoscale fabrication Nanoelectronics and molecular electronics Nanomedicine Nanomechanics Nanosensors Nanophotonics Nanocomposites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信