抛物线,波和Schrödinger方程的混合方案的误差估计和并行评价

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Wenzhuo Xiong , Xiujun Cheng , Qifeng Zhang
{"title":"抛物线,波和Schrödinger方程的混合方案的误差估计和并行评价","authors":"Wenzhuo Xiong ,&nbsp;Xiujun Cheng ,&nbsp;Qifeng Zhang","doi":"10.1016/j.cam.2025.116579","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study error estimates of parallel evaluation for two types of hybrid difference schemes: HIEuler scheme and HBDF2 scheme. Each scheme is composed of the explicit midpoint scheme at the intermediary time-steps combined with the implicit Euler method/the backward difference formula at the final time-step. The key ingredient lies in that error estimates are rigorously proved under the parallel setting with the help of the energy method. To reduce storage requirements and computational costs, efficient parallel solvers for the parabolic, wave and Schrödinger equations are developed, respectively. Finally, several numerical examples are carried out to verify theoretical findings.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"465 ","pages":"Article 116579"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error estimates and parallel evaluation of hybrid schemes for parabolic, wave, and Schrödinger equations\",\"authors\":\"Wenzhuo Xiong ,&nbsp;Xiujun Cheng ,&nbsp;Qifeng Zhang\",\"doi\":\"10.1016/j.cam.2025.116579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study error estimates of parallel evaluation for two types of hybrid difference schemes: HIEuler scheme and HBDF2 scheme. Each scheme is composed of the explicit midpoint scheme at the intermediary time-steps combined with the implicit Euler method/the backward difference formula at the final time-step. The key ingredient lies in that error estimates are rigorously proved under the parallel setting with the help of the energy method. To reduce storage requirements and computational costs, efficient parallel solvers for the parabolic, wave and Schrödinger equations are developed, respectively. Finally, several numerical examples are carried out to verify theoretical findings.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"465 \",\"pages\":\"Article 116579\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725000949\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725000949","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了HIEuler格式和HBDF2格式两种混合差分格式并行计算的误差估计。每种方案均由中间时间步长的显式中点方案与最后时间步长的隐式欧拉法/后向差分公式相结合组成。其关键在于利用能量法在并联环境下对误差估计进行了严格证明。为了减少存储需求和计算成本,分别开发了抛物线方程、波浪方程和Schrödinger方程的高效并行求解器。最后,通过数值算例验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error estimates and parallel evaluation of hybrid schemes for parabolic, wave, and Schrödinger equations
In this paper, we study error estimates of parallel evaluation for two types of hybrid difference schemes: HIEuler scheme and HBDF2 scheme. Each scheme is composed of the explicit midpoint scheme at the intermediary time-steps combined with the implicit Euler method/the backward difference formula at the final time-step. The key ingredient lies in that error estimates are rigorously proved under the parallel setting with the help of the energy method. To reduce storage requirements and computational costs, efficient parallel solvers for the parabolic, wave and Schrödinger equations are developed, respectively. Finally, several numerical examples are carried out to verify theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信