四阶div问题的梯度一致性谱元法

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Yang Han , Ping Lin , Lixiu Wang , Qian Zhang
{"title":"四阶div问题的梯度一致性谱元法","authors":"Yang Han ,&nbsp;Ping Lin ,&nbsp;Lixiu Wang ,&nbsp;Qian Zhang","doi":"10.1016/j.cam.2025.116599","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a novel numerical method to solve fourth-order div problems using <span><math><mrow><mtext>graddiv</mtext></mrow></math></span>-conforming spectral elements on cuboidal meshes. We start by determining the continuity requirements for <span><math><mrow><mtext>graddiv</mtext></mrow></math></span>-conforming spectral elements, followed by constructing these elements using generalized Jacobi polynomials and the Piola transformation. The resulting basis functions exhibit a hierarchical structure, making them easily extendable to higher orders. We apply these <span><math><mrow><mtext>graddiv</mtext></mrow></math></span>-conforming spectral elements to solve the fourth-order div problem and present numerical examples to verify both the efficiency and effectiveness of the method.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"465 ","pages":"Article 116599"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graddiv-conforming spectral element method for fourth-order div problems\",\"authors\":\"Yang Han ,&nbsp;Ping Lin ,&nbsp;Lixiu Wang ,&nbsp;Qian Zhang\",\"doi\":\"10.1016/j.cam.2025.116599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces a novel numerical method to solve fourth-order div problems using <span><math><mrow><mtext>graddiv</mtext></mrow></math></span>-conforming spectral elements on cuboidal meshes. We start by determining the continuity requirements for <span><math><mrow><mtext>graddiv</mtext></mrow></math></span>-conforming spectral elements, followed by constructing these elements using generalized Jacobi polynomials and the Piola transformation. The resulting basis functions exhibit a hierarchical structure, making them easily extendable to higher orders. We apply these <span><math><mrow><mtext>graddiv</mtext></mrow></math></span>-conforming spectral elements to solve the fourth-order div problem and present numerical examples to verify both the efficiency and effectiveness of the method.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"465 \",\"pages\":\"Article 116599\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725001141\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725001141","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用梯度一致性谱元在立方体网格上求解四阶微分问题的新数值方法。首先确定梯度一致性谱元的连续性要求,然后利用广义雅可比多项式和Piola变换构造这些谱元。所得到的基函数表现出层次结构,使它们易于扩展到更高阶。将这些符合梯度的谱元应用于求解四阶微分问题,并给出数值算例验证了该方法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graddiv-conforming spectral element method for fourth-order div problems
This paper introduces a novel numerical method to solve fourth-order div problems using graddiv-conforming spectral elements on cuboidal meshes. We start by determining the continuity requirements for graddiv-conforming spectral elements, followed by constructing these elements using generalized Jacobi polynomials and the Piola transformation. The resulting basis functions exhibit a hierarchical structure, making them easily extendable to higher orders. We apply these graddiv-conforming spectral elements to solve the fourth-order div problem and present numerical examples to verify both the efficiency and effectiveness of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信