基于石墨烯超表面结构的可调谐等离子体诱导透明中红外传感应用

IF 2.4 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tae-Han Kim, Sang Woo Kim, Bo Wha Lee
{"title":"基于石墨烯超表面结构的可调谐等离子体诱导透明中红外传感应用","authors":"Tae-Han Kim,&nbsp;Sang Woo Kim,&nbsp;Bo Wha Lee","doi":"10.1016/j.cap.2025.02.009","DOIUrl":null,"url":null,"abstract":"<div><div>The plasmon-induced transparency (PIT) effect in graphene metasurface (MS) structures is investigated through numerical and theoretical analysis in the mid-infrared range. The unit cell of the MS consists of two vertical and one horizontal graphene strip. By adjusting the Fermi energy, a blue shift in the PIT window occurs, while changes in the surrounding medium's refractive index cause a red shift, enabling tunable PIT control without altering the structure. Theoretical models using coupled Lorentz oscillators show good agreement with the simulation results, revealing a slow-light effect through increased group delay. Sensitivity, Q-factor, and figure of merit (FOM) show that sensitivity ranges from 7.0 to 11 THz/RIU as the refractive index changes, and FOM reaches around 180 with stable Q-factor at 15. This work provides a physical understanding of the tunable PIT effect in graphene MS structures and suggests potential applications in sensing, selective filtering, and advanced refractive index-based detection.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"73 ","pages":"Pages 30-40"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable plasmon-induced transparency based on graphene metasurface structure for mid-infrared sensing applications\",\"authors\":\"Tae-Han Kim,&nbsp;Sang Woo Kim,&nbsp;Bo Wha Lee\",\"doi\":\"10.1016/j.cap.2025.02.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The plasmon-induced transparency (PIT) effect in graphene metasurface (MS) structures is investigated through numerical and theoretical analysis in the mid-infrared range. The unit cell of the MS consists of two vertical and one horizontal graphene strip. By adjusting the Fermi energy, a blue shift in the PIT window occurs, while changes in the surrounding medium's refractive index cause a red shift, enabling tunable PIT control without altering the structure. Theoretical models using coupled Lorentz oscillators show good agreement with the simulation results, revealing a slow-light effect through increased group delay. Sensitivity, Q-factor, and figure of merit (FOM) show that sensitivity ranges from 7.0 to 11 THz/RIU as the refractive index changes, and FOM reaches around 180 with stable Q-factor at 15. This work provides a physical understanding of the tunable PIT effect in graphene MS structures and suggests potential applications in sensing, selective filtering, and advanced refractive index-based detection.</div></div>\",\"PeriodicalId\":11037,\"journal\":{\"name\":\"Current Applied Physics\",\"volume\":\"73 \",\"pages\":\"Pages 30-40\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567173925000409\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925000409","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过中红外波段的数值和理论分析,研究了等离子体诱导石墨烯超表面(MS)结构的透明效应。质谱的单元格由两条垂直和一条水平的石墨烯条组成。通过调整费米能量,PIT窗口发生蓝移,而周围介质折射率的变化引起红移,从而在不改变结构的情况下实现可调的PIT控制。使用耦合洛伦兹振子的理论模型与仿真结果吻合良好,揭示了通过增加群延迟而产生的慢光效应。灵敏度、q因子和性能因数(FOM)表明,随着折射率的变化,灵敏度范围在7.0 ~ 11 THz/RIU之间,FOM达到180左右,q因子稳定在15。这项工作提供了对石墨烯质谱结构中可调谐PIT效应的物理理解,并提出了在传感、选择性滤波和先进的基于折射率的检测方面的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tunable plasmon-induced transparency based on graphene metasurface structure for mid-infrared sensing applications

Tunable plasmon-induced transparency based on graphene metasurface structure for mid-infrared sensing applications
The plasmon-induced transparency (PIT) effect in graphene metasurface (MS) structures is investigated through numerical and theoretical analysis in the mid-infrared range. The unit cell of the MS consists of two vertical and one horizontal graphene strip. By adjusting the Fermi energy, a blue shift in the PIT window occurs, while changes in the surrounding medium's refractive index cause a red shift, enabling tunable PIT control without altering the structure. Theoretical models using coupled Lorentz oscillators show good agreement with the simulation results, revealing a slow-light effect through increased group delay. Sensitivity, Q-factor, and figure of merit (FOM) show that sensitivity ranges from 7.0 to 11 THz/RIU as the refractive index changes, and FOM reaches around 180 with stable Q-factor at 15. This work provides a physical understanding of the tunable PIT effect in graphene MS structures and suggests potential applications in sensing, selective filtering, and advanced refractive index-based detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Applied Physics
Current Applied Physics 物理-材料科学:综合
CiteScore
4.80
自引率
0.00%
发文量
213
审稿时长
33 days
期刊介绍: Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications. Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques. Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals. Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review. The Journal is owned by the Korean Physical Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信