针对刺突七肽重复区的泛冠状病毒融合抑制肽的计算优化

IF 3.5 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Peixiang Gao , Shuo Liu , Xiaojing Chi , Xinhui Zhang , Xiuying Liu , Xuehua Yang , Huarui Duan , Jingya Zhou , Weijin Huang , Wei Yang
{"title":"针对刺突七肽重复区的泛冠状病毒融合抑制肽的计算优化","authors":"Peixiang Gao ,&nbsp;Shuo Liu ,&nbsp;Xiaojing Chi ,&nbsp;Xinhui Zhang ,&nbsp;Xiuying Liu ,&nbsp;Xuehua Yang ,&nbsp;Huarui Duan ,&nbsp;Jingya Zhou ,&nbsp;Weijin Huang ,&nbsp;Wei Yang","doi":"10.1016/j.bsheal.2025.01.001","DOIUrl":null,"url":null,"abstract":"<div><div>In the past two decades, highly pathogenic coronaviruses (CoVs), such as severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have constituted a grave threat to human health. Broad-spectrum anti-CoV fusion inhibitors that target the heptapeptide repeat (HR) region within the S2 subunit of SARS-CoV-2 spike (S) protein exhibit inhibitory activity against various CoVs. In this study, we employed EK1, a fusion inhibitor previously characterized for its broad spectrum and potent antiviral activity, as a scaffold for computational design to enhance its inhibitory potential using the Rosetta software suite. We designed EK1 variants and synthesized two N-terminally extended EK1 elongation peptides, and evaluated their inhibitory activity. The results revealed that the designed peptides enhanced inhibitory activity against diverse CoVs. Structural analysis and molecular dynamics simulations demonstrated that EK1 variants formed more robust interactions with HR1 of SARS-CoV-2, and these interactions were conserved across different CoVs. These findings underscore the utility of computational approaches in optimizing therapeutic peptides.</div></div>","PeriodicalId":36178,"journal":{"name":"Biosafety and Health","volume":"7 1","pages":"Pages 44-58"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational optimization of a pan-coronavirus fusion inhibitory peptide targeting spike’s heptapeptide repeat region\",\"authors\":\"Peixiang Gao ,&nbsp;Shuo Liu ,&nbsp;Xiaojing Chi ,&nbsp;Xinhui Zhang ,&nbsp;Xiuying Liu ,&nbsp;Xuehua Yang ,&nbsp;Huarui Duan ,&nbsp;Jingya Zhou ,&nbsp;Weijin Huang ,&nbsp;Wei Yang\",\"doi\":\"10.1016/j.bsheal.2025.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the past two decades, highly pathogenic coronaviruses (CoVs), such as severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have constituted a grave threat to human health. Broad-spectrum anti-CoV fusion inhibitors that target the heptapeptide repeat (HR) region within the S2 subunit of SARS-CoV-2 spike (S) protein exhibit inhibitory activity against various CoVs. In this study, we employed EK1, a fusion inhibitor previously characterized for its broad spectrum and potent antiviral activity, as a scaffold for computational design to enhance its inhibitory potential using the Rosetta software suite. We designed EK1 variants and synthesized two N-terminally extended EK1 elongation peptides, and evaluated their inhibitory activity. The results revealed that the designed peptides enhanced inhibitory activity against diverse CoVs. Structural analysis and molecular dynamics simulations demonstrated that EK1 variants formed more robust interactions with HR1 of SARS-CoV-2, and these interactions were conserved across different CoVs. These findings underscore the utility of computational approaches in optimizing therapeutic peptides.</div></div>\",\"PeriodicalId\":36178,\"journal\":{\"name\":\"Biosafety and Health\",\"volume\":\"7 1\",\"pages\":\"Pages 44-58\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosafety and Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590053625000023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosafety and Health","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590053625000023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

近二十年来,严重急性呼吸综合征冠状病毒(SARS-CoV)、中东呼吸综合征冠状病毒(MERS-CoV)、严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)等高致病性冠状病毒对人类健康构成严重威胁。针对SARS-CoV-2刺突(S)蛋白S2亚基内七肽重复(HR)区域的广谱抗冠状病毒融合抑制剂对多种冠状病毒表现出抑制活性。在这项研究中,我们使用EK1作为计算设计的框架,使用Rosetta软件套件增强其抑制潜力。EK1是一种融合抑制剂,以前以其广谱和有效的抗病毒活性为特征。我们设计了EK1变异体,合成了两个n端延伸的EK1延伸肽,并评估了它们的抑制活性。结果表明,所设计的肽增强了对多种冠状病毒的抑制活性。结构分析和分子动力学模拟表明,EK1变异与SARS-CoV-2的HR1形成了更强的相互作用,并且这些相互作用在不同的冠状病毒中是保守的。这些发现强调了计算方法在优化治疗肽中的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational optimization of a pan-coronavirus fusion inhibitory peptide targeting spike’s heptapeptide repeat region
In the past two decades, highly pathogenic coronaviruses (CoVs), such as severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have constituted a grave threat to human health. Broad-spectrum anti-CoV fusion inhibitors that target the heptapeptide repeat (HR) region within the S2 subunit of SARS-CoV-2 spike (S) protein exhibit inhibitory activity against various CoVs. In this study, we employed EK1, a fusion inhibitor previously characterized for its broad spectrum and potent antiviral activity, as a scaffold for computational design to enhance its inhibitory potential using the Rosetta software suite. We designed EK1 variants and synthesized two N-terminally extended EK1 elongation peptides, and evaluated their inhibitory activity. The results revealed that the designed peptides enhanced inhibitory activity against diverse CoVs. Structural analysis and molecular dynamics simulations demonstrated that EK1 variants formed more robust interactions with HR1 of SARS-CoV-2, and these interactions were conserved across different CoVs. These findings underscore the utility of computational approaches in optimizing therapeutic peptides.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosafety and Health
Biosafety and Health Medicine-Infectious Diseases
CiteScore
7.60
自引率
0.00%
发文量
116
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信