Mathis Van de Voorde , Damien Hudry , Dmitry Busko , Bryce S. Richards , Rebecca Saive
{"title":"CsPbCl3:Yb3+纳米晶体:胶体稳定富镱反应副产物对发光下转换性能的不利影响","authors":"Mathis Van de Voorde , Damien Hudry , Dmitry Busko , Bryce S. Richards , Rebecca Saive","doi":"10.1016/j.omx.2025.100407","DOIUrl":null,"url":null,"abstract":"<div><div>The development of near infra-red (NIR) emitting down-converters is a promising route for improving photovoltaic output through efficient light management. Quantum-cutting Yb<sup>3+</sup>-doped CsPbCl<sub>3</sub> nanocrystals (NCs) are interesting for this application due to their high photoluminescence quantum yields (PLQY >100 %) and attractive NIR spectral properties which include high absorption cross section and minimal overlap between absorption and emission spectra. In this work, we fabricated CsPbCl<sub>3</sub>:Yb<sup>3+</sup> NCs with the hot-injection method and studied them using structural/optical characterization methods such as x-ray diffraction, scanning transmission electron microscopy, energy-dispersive x-ray spectroscopy, fluorescence lifetime and quantum yield measurements. We found that the hot-injection method is susceptible to the formation of colloidally stable Yb-rich reaction by-products. After separating these by-products from the NCs, NIR PLQY increased by a relative 46 %. Although the PLQY values recorded in this study are 4–7 times lower than in other studies, these findings may explain some discrepancies in photoluminescence efficiency reported with this material.</div></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"26 ","pages":"Article 100407"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CsPbCl3:Yb3+ nanocrystals: Adverse effects of colloidally stable ytterbium-rich reaction by-products on luminescent down-conversion performance\",\"authors\":\"Mathis Van de Voorde , Damien Hudry , Dmitry Busko , Bryce S. Richards , Rebecca Saive\",\"doi\":\"10.1016/j.omx.2025.100407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of near infra-red (NIR) emitting down-converters is a promising route for improving photovoltaic output through efficient light management. Quantum-cutting Yb<sup>3+</sup>-doped CsPbCl<sub>3</sub> nanocrystals (NCs) are interesting for this application due to their high photoluminescence quantum yields (PLQY >100 %) and attractive NIR spectral properties which include high absorption cross section and minimal overlap between absorption and emission spectra. In this work, we fabricated CsPbCl<sub>3</sub>:Yb<sup>3+</sup> NCs with the hot-injection method and studied them using structural/optical characterization methods such as x-ray diffraction, scanning transmission electron microscopy, energy-dispersive x-ray spectroscopy, fluorescence lifetime and quantum yield measurements. We found that the hot-injection method is susceptible to the formation of colloidally stable Yb-rich reaction by-products. After separating these by-products from the NCs, NIR PLQY increased by a relative 46 %. Although the PLQY values recorded in this study are 4–7 times lower than in other studies, these findings may explain some discrepancies in photoluminescence efficiency reported with this material.</div></div>\",\"PeriodicalId\":52192,\"journal\":{\"name\":\"Optical Materials: X\",\"volume\":\"26 \",\"pages\":\"Article 100407\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Materials: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590147825000099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590147825000099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
CsPbCl3:Yb3+ nanocrystals: Adverse effects of colloidally stable ytterbium-rich reaction by-products on luminescent down-conversion performance
The development of near infra-red (NIR) emitting down-converters is a promising route for improving photovoltaic output through efficient light management. Quantum-cutting Yb3+-doped CsPbCl3 nanocrystals (NCs) are interesting for this application due to their high photoluminescence quantum yields (PLQY >100 %) and attractive NIR spectral properties which include high absorption cross section and minimal overlap between absorption and emission spectra. In this work, we fabricated CsPbCl3:Yb3+ NCs with the hot-injection method and studied them using structural/optical characterization methods such as x-ray diffraction, scanning transmission electron microscopy, energy-dispersive x-ray spectroscopy, fluorescence lifetime and quantum yield measurements. We found that the hot-injection method is susceptible to the formation of colloidally stable Yb-rich reaction by-products. After separating these by-products from the NCs, NIR PLQY increased by a relative 46 %. Although the PLQY values recorded in this study are 4–7 times lower than in other studies, these findings may explain some discrepancies in photoluminescence efficiency reported with this material.