利用近场扫描光学显微镜测量探测相变Sb2S3薄膜的激光结晶和再晶化

Adrian Podpirka*, Cameron Gutgsell, Gabriella M. Hunt, Robert C. Bruce, David Shrekenhamer, Blake S. Simpkins and Ronald J. Warzoha, 
{"title":"利用近场扫描光学显微镜测量探测相变Sb2S3薄膜的激光结晶和再晶化","authors":"Adrian Podpirka*,&nbsp;Cameron Gutgsell,&nbsp;Gabriella M. Hunt,&nbsp;Robert C. Bruce,&nbsp;David Shrekenhamer,&nbsp;Blake S. Simpkins and Ronald J. Warzoha,&nbsp;","doi":"10.1021/acsaom.4c0043710.1021/acsaom.4c00437","DOIUrl":null,"url":null,"abstract":"<p >Phase change materials (PCMs) are seeing tremendous interest for their use in reconfigurable photonic devices. Understanding the volume of the phase change is critical to the construction of devices. In this work, we demonstrate the ability to crystallize and reamorphize Sb<sub>2</sub>S<sub>3</sub> thin films using a 405 nm laser and nondestructively quantify partial volumetric crystallization with nanoscale resolution via near-field scanning optical microscopy (NSOM). We provide an analytical description of the NSOM measurements and correlate the results with a model of laser/Sb<sub>2</sub>S<sub>3</sub> interactions that includes laser irradiance power, thermal transport, and phase change kinetics. The results demonstrate a relationship between computational modeling and physical device behavior, which is critical for the creation of phase change-based devices.</p>","PeriodicalId":29803,"journal":{"name":"ACS Applied Optical Materials","volume":"3 2","pages":"305–312 305–312"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing Near-Field Scanning Optical Microscopy Measurements to Probe Laser Crystallization and Reamorphization in Phase Change Sb2S3 Thin Films\",\"authors\":\"Adrian Podpirka*,&nbsp;Cameron Gutgsell,&nbsp;Gabriella M. Hunt,&nbsp;Robert C. Bruce,&nbsp;David Shrekenhamer,&nbsp;Blake S. Simpkins and Ronald J. Warzoha,&nbsp;\",\"doi\":\"10.1021/acsaom.4c0043710.1021/acsaom.4c00437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Phase change materials (PCMs) are seeing tremendous interest for their use in reconfigurable photonic devices. Understanding the volume of the phase change is critical to the construction of devices. In this work, we demonstrate the ability to crystallize and reamorphize Sb<sub>2</sub>S<sub>3</sub> thin films using a 405 nm laser and nondestructively quantify partial volumetric crystallization with nanoscale resolution via near-field scanning optical microscopy (NSOM). We provide an analytical description of the NSOM measurements and correlate the results with a model of laser/Sb<sub>2</sub>S<sub>3</sub> interactions that includes laser irradiance power, thermal transport, and phase change kinetics. The results demonstrate a relationship between computational modeling and physical device behavior, which is critical for the creation of phase change-based devices.</p>\",\"PeriodicalId\":29803,\"journal\":{\"name\":\"ACS Applied Optical Materials\",\"volume\":\"3 2\",\"pages\":\"305–312 305–312\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Optical Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaom.4c00437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Optical Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaom.4c00437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

相变材料(PCMs)在可重构光子器件中的应用引起了人们极大的兴趣。了解相变量对器件的构造至关重要。在这项工作中,我们展示了使用405 nm激光对Sb2S3薄膜进行结晶和再非晶化的能力,并通过近场扫描光学显微镜(NSOM)以纳米级分辨率对部分体积结晶进行非破坏性量化。我们提供了NSOM测量的分析描述,并将结果与激光/Sb2S3相互作用的模型相关联,该模型包括激光辐照功率、热输运和相变动力学。结果证明了计算建模和物理器件行为之间的关系,这对于基于相变的器件的创建至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Utilizing Near-Field Scanning Optical Microscopy Measurements to Probe Laser Crystallization and Reamorphization in Phase Change Sb2S3 Thin Films

Utilizing Near-Field Scanning Optical Microscopy Measurements to Probe Laser Crystallization and Reamorphization in Phase Change Sb2S3 Thin Films

Phase change materials (PCMs) are seeing tremendous interest for their use in reconfigurable photonic devices. Understanding the volume of the phase change is critical to the construction of devices. In this work, we demonstrate the ability to crystallize and reamorphize Sb2S3 thin films using a 405 nm laser and nondestructively quantify partial volumetric crystallization with nanoscale resolution via near-field scanning optical microscopy (NSOM). We provide an analytical description of the NSOM measurements and correlate the results with a model of laser/Sb2S3 interactions that includes laser irradiance power, thermal transport, and phase change kinetics. The results demonstrate a relationship between computational modeling and physical device behavior, which is critical for the creation of phase change-based devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Optical Materials
ACS Applied Optical Materials 材料科学-光学材料-
CiteScore
1.10
自引率
0.00%
发文量
0
期刊介绍: ACS Applied Optical Materials is an international and interdisciplinary forum to publish original experimental and theoretical including simulation and modeling research in optical materials complementing the ACS Applied Materials portfolio. With a focus on innovative applications ACS Applied Optical Materials also complements and expands the scope of existing ACS publications that focus on fundamental aspects of the interaction between light and matter in materials science including ACS Photonics Macromolecules Journal of Physical Chemistry C ACS Nano and Nano Letters.The scope of ACS Applied Optical Materials includes high quality research of an applied nature that integrates knowledge in materials science chemistry physics optical science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信