磁自组装微针阵列的压容柔性压力传感器

IF 9.1 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Shengbin Li, Yifan Wang, Yuanzhao Wu*, Waqas Asghar, Xiangling Xia, Chenxu Liu, Xinyu Bai, Jie Shang, Yiwei Liu* and Run-Wei Li*, 
{"title":"磁自组装微针阵列的压容柔性压力传感器","authors":"Shengbin Li,&nbsp;Yifan Wang,&nbsp;Yuanzhao Wu*,&nbsp;Waqas Asghar,&nbsp;Xiangling Xia,&nbsp;Chenxu Liu,&nbsp;Xinyu Bai,&nbsp;Jie Shang,&nbsp;Yiwei Liu* and Run-Wei Li*,&nbsp;","doi":"10.1021/acssensors.4c0289510.1021/acssensors.4c02895","DOIUrl":null,"url":null,"abstract":"<p >Flexible pressure sensors are pivotal in advancing artificial intelligence, the Internet of Things (IoT), and wearable technologies. While microstructuring the functional layer of these sensors effectively enhances their performance, current fabrication methods often require complex equipment and time-consuming processes. Herein, we present a novel magnetization-induced self-assembly method to develop a magnetically grown microneedle array as a dielectric layer for flexible capacitive pressure sensors. By precisely controlling the magnetic particle concentration and dynamic magnetic field strength, we achieve a tunable microneedle morphology. The resulting sensor exhibits high sensitivity (4.11 kPa<sup>–1</sup>), an ultrafast response time (20 ms), excellent cyclic stability (≈1700 cycles), and flexibility. We demonstrate real-time monitoring of various physiological signals including pulse, grip force, breathing rate, and head motion. This study introduces a promising approach for fabricating high-performance flexible sensors, potentially enabling more intuitive and effective human–machine interactions.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"10 2","pages":"1063–1071 1063–1071"},"PeriodicalIF":9.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Piezo-Capacitive Flexible Pressure Sensor with Magnetically Self-Assembled Microneedle Array\",\"authors\":\"Shengbin Li,&nbsp;Yifan Wang,&nbsp;Yuanzhao Wu*,&nbsp;Waqas Asghar,&nbsp;Xiangling Xia,&nbsp;Chenxu Liu,&nbsp;Xinyu Bai,&nbsp;Jie Shang,&nbsp;Yiwei Liu* and Run-Wei Li*,&nbsp;\",\"doi\":\"10.1021/acssensors.4c0289510.1021/acssensors.4c02895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Flexible pressure sensors are pivotal in advancing artificial intelligence, the Internet of Things (IoT), and wearable technologies. While microstructuring the functional layer of these sensors effectively enhances their performance, current fabrication methods often require complex equipment and time-consuming processes. Herein, we present a novel magnetization-induced self-assembly method to develop a magnetically grown microneedle array as a dielectric layer for flexible capacitive pressure sensors. By precisely controlling the magnetic particle concentration and dynamic magnetic field strength, we achieve a tunable microneedle morphology. The resulting sensor exhibits high sensitivity (4.11 kPa<sup>–1</sup>), an ultrafast response time (20 ms), excellent cyclic stability (≈1700 cycles), and flexibility. We demonstrate real-time monitoring of various physiological signals including pulse, grip force, breathing rate, and head motion. This study introduces a promising approach for fabricating high-performance flexible sensors, potentially enabling more intuitive and effective human–machine interactions.</p>\",\"PeriodicalId\":24,\"journal\":{\"name\":\"ACS Sensors\",\"volume\":\"10 2\",\"pages\":\"1063–1071 1063–1071\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sensors\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssensors.4c02895\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssensors.4c02895","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

柔性压力传感器是推进人工智能、物联网(IoT)和可穿戴技术的关键。虽然这些传感器功能层的微结构有效地提高了它们的性能,但目前的制造方法往往需要复杂的设备和耗时的过程。在此,我们提出了一种新的磁化诱导自组装方法来开发磁生长微针阵列作为柔性电容压力传感器的介电层。通过精确控制磁粉浓度和动态磁场强度,实现了微针形态的可调。由此产生的传感器具有高灵敏度(4.11 kPa-1),超快响应时间(20 ms),优异的循环稳定性(≈1700周期)和灵活性。我们演示了各种生理信号的实时监测,包括脉搏、握力、呼吸频率和头部运动。本研究介绍了一种制造高性能柔性传感器的有前途的方法,有可能实现更直观和有效的人机交互。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Piezo-Capacitive Flexible Pressure Sensor with Magnetically Self-Assembled Microneedle Array

Piezo-Capacitive Flexible Pressure Sensor with Magnetically Self-Assembled Microneedle Array

Flexible pressure sensors are pivotal in advancing artificial intelligence, the Internet of Things (IoT), and wearable technologies. While microstructuring the functional layer of these sensors effectively enhances their performance, current fabrication methods often require complex equipment and time-consuming processes. Herein, we present a novel magnetization-induced self-assembly method to develop a magnetically grown microneedle array as a dielectric layer for flexible capacitive pressure sensors. By precisely controlling the magnetic particle concentration and dynamic magnetic field strength, we achieve a tunable microneedle morphology. The resulting sensor exhibits high sensitivity (4.11 kPa–1), an ultrafast response time (20 ms), excellent cyclic stability (≈1700 cycles), and flexibility. We demonstrate real-time monitoring of various physiological signals including pulse, grip force, breathing rate, and head motion. This study introduces a promising approach for fabricating high-performance flexible sensors, potentially enabling more intuitive and effective human–machine interactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信