基于纳米孔共价有机框架膜的H2S气体检测光波导传感器

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Patima Nizamidin*, Xiangdi Du, Haiqi Gao and Yanmei Li, 
{"title":"基于纳米孔共价有机框架膜的H2S气体检测光波导传感器","authors":"Patima Nizamidin*,&nbsp;Xiangdi Du,&nbsp;Haiqi Gao and Yanmei Li,&nbsp;","doi":"10.1021/acsanm.4c0655710.1021/acsanm.4c06557","DOIUrl":null,"url":null,"abstract":"<p >Nanoporous covalent organic frameworks (COFs) exhibit exceptional potential as sensitive materials for gas sensors due to their film-forming capabilities and tunable host–guest interactions. This study addresses the challenge of selectively detecting H<sub>2</sub>S gas by developing an optical waveguide gas sensor (OWGS) utilizing [H<sub>4</sub>bptc-(TAPT)<sub>3</sub>]<i><sub>n</sub></i>-COF films (Here, H<sub>4</sub>bptc refers to biphenyl- 3,3′,5,5′-tetracarboxylic acid, and TAPT represents 2,4,6-tris(4-aminophenyl)-1,3,5-triazine). These films were fabricated by immobilizing COFs on TiO<sub>2</sub> substrates via a solvothermal reaction, followed by surface optimization using a layer-by-layer assembly method. This assembly method induced a structural transformation in the [H<sub>4</sub>bptc-(TAPT)<sub>3</sub>]<i><sub>n</sub></i>-COF films, progressing from densely layered structures to a graphene-like architecture and eventually forming more intricate configurations. Among these, the 3-layered [H<sub>4</sub>bptc-(TAPT)<sub>3</sub>]<i><sub>n</sub></i>-COF film demonstrates a graphene-like structure and achieved rapid (&lt;2 s) and selective response to H<sub>2</sub>S gas, with notable refractive index changes upon proton transfer. The Density-functional theory (DFT) calculations revealed the highest binding energy between the triazine ring in [H<sub>4</sub>bptc-(TAPT)<sub>3</sub>]<i><sub>n</sub></i>-COF and H<sub>2</sub>S molecules. The sensor exhibited excellent selectivity, a broad detection range (100 ppm-1 ppb), outstanding reproducibility, moisture resistance, and an ultralow detection limit of 1.07 ppb at room temperature. Additionally, the H<sub>2</sub>S adsorption process was determined as endothermic, with an adsorption capacity of 10.98 ng·cm<sup>–2</sup> at 293 K.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 8","pages":"3876–3886 3876–3886"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Nanoporous Covalent Organic Framework Film-Based Optical Waveguide Sensor for H2S Gas Detection\",\"authors\":\"Patima Nizamidin*,&nbsp;Xiangdi Du,&nbsp;Haiqi Gao and Yanmei Li,&nbsp;\",\"doi\":\"10.1021/acsanm.4c0655710.1021/acsanm.4c06557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Nanoporous covalent organic frameworks (COFs) exhibit exceptional potential as sensitive materials for gas sensors due to their film-forming capabilities and tunable host–guest interactions. This study addresses the challenge of selectively detecting H<sub>2</sub>S gas by developing an optical waveguide gas sensor (OWGS) utilizing [H<sub>4</sub>bptc-(TAPT)<sub>3</sub>]<i><sub>n</sub></i>-COF films (Here, H<sub>4</sub>bptc refers to biphenyl- 3,3′,5,5′-tetracarboxylic acid, and TAPT represents 2,4,6-tris(4-aminophenyl)-1,3,5-triazine). These films were fabricated by immobilizing COFs on TiO<sub>2</sub> substrates via a solvothermal reaction, followed by surface optimization using a layer-by-layer assembly method. This assembly method induced a structural transformation in the [H<sub>4</sub>bptc-(TAPT)<sub>3</sub>]<i><sub>n</sub></i>-COF films, progressing from densely layered structures to a graphene-like architecture and eventually forming more intricate configurations. Among these, the 3-layered [H<sub>4</sub>bptc-(TAPT)<sub>3</sub>]<i><sub>n</sub></i>-COF film demonstrates a graphene-like structure and achieved rapid (&lt;2 s) and selective response to H<sub>2</sub>S gas, with notable refractive index changes upon proton transfer. The Density-functional theory (DFT) calculations revealed the highest binding energy between the triazine ring in [H<sub>4</sub>bptc-(TAPT)<sub>3</sub>]<i><sub>n</sub></i>-COF and H<sub>2</sub>S molecules. The sensor exhibited excellent selectivity, a broad detection range (100 ppm-1 ppb), outstanding reproducibility, moisture resistance, and an ultralow detection limit of 1.07 ppb at room temperature. Additionally, the H<sub>2</sub>S adsorption process was determined as endothermic, with an adsorption capacity of 10.98 ng·cm<sup>–2</sup> at 293 K.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 8\",\"pages\":\"3876–3886 3876–3886\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.4c06557\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c06557","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纳米多孔共价有机框架(COFs)由于其成膜能力和可调节的主客体相互作用而表现出作为气体传感器敏感材料的特殊潜力。本研究通过利用[H4bptc-(TAPT)3]n-COF薄膜开发光波导气体传感器(OWGS)来解决选择性检测H2S气体的挑战(这里,H4bptc指的是联苯- 3,3 ',5,5 ' -四羧酸,TAPT代表2,4,6-三(4-氨基苯基)-1,3,5-三嗪)。这些薄膜是通过溶剂热反应将COFs固定在TiO2衬底上制备的,然后使用逐层组装方法进行表面优化。这种组装方法诱导了[H4bptc-(tpt)3]n-COF薄膜的结构转变,从密集的层状结构发展到类似石墨烯的结构,最终形成更复杂的结构。其中,3层[H4bptc-(tpt)3]n-COF薄膜具有类似石墨烯的结构,对H2S气体具有快速(< 2s)的选择性响应,质子转移后折射率变化显著。密度泛函理论(DFT)计算表明,[H4bptc-(tpt)3]n-COF中三嗪环与H2S分子之间的结合能最高。该传感器具有优异的选择性、较宽的检测范围(100 ppm-1 ppb)、出色的再现性、耐湿气性和室温下1.07 ppb的超低检测限。吸附过程为吸热吸附,在293 K下吸附量为10.98 ng·cm-2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Nanoporous Covalent Organic Framework Film-Based Optical Waveguide Sensor for H2S Gas Detection

A Nanoporous Covalent Organic Framework Film-Based Optical Waveguide Sensor for H2S Gas Detection

Nanoporous covalent organic frameworks (COFs) exhibit exceptional potential as sensitive materials for gas sensors due to their film-forming capabilities and tunable host–guest interactions. This study addresses the challenge of selectively detecting H2S gas by developing an optical waveguide gas sensor (OWGS) utilizing [H4bptc-(TAPT)3]n-COF films (Here, H4bptc refers to biphenyl- 3,3′,5,5′-tetracarboxylic acid, and TAPT represents 2,4,6-tris(4-aminophenyl)-1,3,5-triazine). These films were fabricated by immobilizing COFs on TiO2 substrates via a solvothermal reaction, followed by surface optimization using a layer-by-layer assembly method. This assembly method induced a structural transformation in the [H4bptc-(TAPT)3]n-COF films, progressing from densely layered structures to a graphene-like architecture and eventually forming more intricate configurations. Among these, the 3-layered [H4bptc-(TAPT)3]n-COF film demonstrates a graphene-like structure and achieved rapid (<2 s) and selective response to H2S gas, with notable refractive index changes upon proton transfer. The Density-functional theory (DFT) calculations revealed the highest binding energy between the triazine ring in [H4bptc-(TAPT)3]n-COF and H2S molecules. The sensor exhibited excellent selectivity, a broad detection range (100 ppm-1 ppb), outstanding reproducibility, moisture resistance, and an ultralow detection limit of 1.07 ppb at room temperature. Additionally, the H2S adsorption process was determined as endothermic, with an adsorption capacity of 10.98 ng·cm–2 at 293 K.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信