Hong Zhou, Qi Liu, Minghui Chen, Yiyang Xie, Wenbei Xu, Xinran Zhang, Canran Jiang, Peipei Dou, Zhou Fang*, Hong Wang* and Shaohui Zheng*,
{"title":"尿酶驱动Janus纳米马达用于膀胱肿瘤微rna的动态富集和多重检测","authors":"Hong Zhou, Qi Liu, Minghui Chen, Yiyang Xie, Wenbei Xu, Xinran Zhang, Canran Jiang, Peipei Dou, Zhou Fang*, Hong Wang* and Shaohui Zheng*, ","doi":"10.1021/acssensors.4c0299610.1021/acssensors.4c02996","DOIUrl":null,"url":null,"abstract":"<p >Bladder cancer diagnosis typically involves approaches such as cystoscopy, biopsy, urine cytology, and medical imaging. However, these invasive procedures carry a risk of complications, and direct in vitro detection on clinical samples often results in low sensitivity. Therefore, this study proposed urease-driven magnetic nanomotors for the simultaneous detection of bladder cancer biomarkers miRNA-21 and miRNA-182 in urine samples, aiming for noninvasive diagnosis. The nanomotor was constructed from gold nanorods, mesoporous organo-silica, Fe<sub>3</sub>O<sub>4</sub>, and hairpin DNA (hDNA), functioning as a recognition probe for the target miRNAs. In the urea solution, urease catalyzed urea into ammonia and carbon dioxide, propelling the nanomotor for about 60 min, which enhanced the capacity of the probes to capture the target miRNAs. Subsequently, magnetic enrichment enabled highly sensitive dual-miRNA analysis, allowing quantification of miRNA-21 and miRNA-182 with detection limits of 29 and 362 fM, respectively. The nanoprobes also effectively detected miRNAs in spiked urine samples. This simultaneous detection of multiple miRNAs increased the reliability of cancer diagnosis, presenting a novel noninvasive strategy for bladder cancer detection through precise in vitro analysis of actual urine samples.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"10 2","pages":"1155–1165 1155–1165"},"PeriodicalIF":9.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Urease-Driven Janus Nanomotors for Dynamic Enrichment and Multiplexed Detection of Bladder Cancer MicroRNAs in Urine\",\"authors\":\"Hong Zhou, Qi Liu, Minghui Chen, Yiyang Xie, Wenbei Xu, Xinran Zhang, Canran Jiang, Peipei Dou, Zhou Fang*, Hong Wang* and Shaohui Zheng*, \",\"doi\":\"10.1021/acssensors.4c0299610.1021/acssensors.4c02996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Bladder cancer diagnosis typically involves approaches such as cystoscopy, biopsy, urine cytology, and medical imaging. However, these invasive procedures carry a risk of complications, and direct in vitro detection on clinical samples often results in low sensitivity. Therefore, this study proposed urease-driven magnetic nanomotors for the simultaneous detection of bladder cancer biomarkers miRNA-21 and miRNA-182 in urine samples, aiming for noninvasive diagnosis. The nanomotor was constructed from gold nanorods, mesoporous organo-silica, Fe<sub>3</sub>O<sub>4</sub>, and hairpin DNA (hDNA), functioning as a recognition probe for the target miRNAs. In the urea solution, urease catalyzed urea into ammonia and carbon dioxide, propelling the nanomotor for about 60 min, which enhanced the capacity of the probes to capture the target miRNAs. Subsequently, magnetic enrichment enabled highly sensitive dual-miRNA analysis, allowing quantification of miRNA-21 and miRNA-182 with detection limits of 29 and 362 fM, respectively. The nanoprobes also effectively detected miRNAs in spiked urine samples. This simultaneous detection of multiple miRNAs increased the reliability of cancer diagnosis, presenting a novel noninvasive strategy for bladder cancer detection through precise in vitro analysis of actual urine samples.</p>\",\"PeriodicalId\":24,\"journal\":{\"name\":\"ACS Sensors\",\"volume\":\"10 2\",\"pages\":\"1155–1165 1155–1165\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sensors\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssensors.4c02996\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssensors.4c02996","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Urease-Driven Janus Nanomotors for Dynamic Enrichment and Multiplexed Detection of Bladder Cancer MicroRNAs in Urine
Bladder cancer diagnosis typically involves approaches such as cystoscopy, biopsy, urine cytology, and medical imaging. However, these invasive procedures carry a risk of complications, and direct in vitro detection on clinical samples often results in low sensitivity. Therefore, this study proposed urease-driven magnetic nanomotors for the simultaneous detection of bladder cancer biomarkers miRNA-21 and miRNA-182 in urine samples, aiming for noninvasive diagnosis. The nanomotor was constructed from gold nanorods, mesoporous organo-silica, Fe3O4, and hairpin DNA (hDNA), functioning as a recognition probe for the target miRNAs. In the urea solution, urease catalyzed urea into ammonia and carbon dioxide, propelling the nanomotor for about 60 min, which enhanced the capacity of the probes to capture the target miRNAs. Subsequently, magnetic enrichment enabled highly sensitive dual-miRNA analysis, allowing quantification of miRNA-21 and miRNA-182 with detection limits of 29 and 362 fM, respectively. The nanoprobes also effectively detected miRNAs in spiked urine samples. This simultaneous detection of multiple miRNAs increased the reliability of cancer diagnosis, presenting a novel noninvasive strategy for bladder cancer detection through precise in vitro analysis of actual urine samples.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.