基于Finsler几何和各向异性弹性的球面数据沿测地线重建

IF 2.1 1区 数学 Q1 MATHEMATICS
Maarten V. de Hoop , Joonas Ilmavirta , Matti Lassas
{"title":"基于Finsler几何和各向异性弹性的球面数据沿测地线重建","authors":"Maarten V. de Hoop ,&nbsp;Joonas Ilmavirta ,&nbsp;Matti Lassas","doi":"10.1016/j.matpur.2025.103688","DOIUrl":null,"url":null,"abstract":"<div><div>Dix formulated the inverse problem of recovering an elastic body from the measurements of wave fronts of point sources. We geometrize this problem in the context of seismology, leading to the geometrical inverse problem of recovering a Finsler manifold from certain sphere data in a given open subset of the manifold. We solve this problem locally along any geodesic through the measurement set.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"196 ","pages":"Article 103688"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstruction along a geodesic from sphere data in Finsler geometry and anisotropic elasticity\",\"authors\":\"Maarten V. de Hoop ,&nbsp;Joonas Ilmavirta ,&nbsp;Matti Lassas\",\"doi\":\"10.1016/j.matpur.2025.103688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dix formulated the inverse problem of recovering an elastic body from the measurements of wave fronts of point sources. We geometrize this problem in the context of seismology, leading to the geometrical inverse problem of recovering a Finsler manifold from certain sphere data in a given open subset of the manifold. We solve this problem locally along any geodesic through the measurement set.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"196 \",\"pages\":\"Article 103688\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425000327\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425000327","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Dix提出了从点源波前测量中恢复弹性体的反问题。我们在地震学的背景下将这个问题几何化,导致从给定的开放子集的某些球体数据中恢复芬斯勒流形的几何逆问题。我们通过测量集沿任意测地线局部求解这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconstruction along a geodesic from sphere data in Finsler geometry and anisotropic elasticity
Dix formulated the inverse problem of recovering an elastic body from the measurements of wave fronts of point sources. We geometrize this problem in the context of seismology, leading to the geometrical inverse problem of recovering a Finsler manifold from certain sphere data in a given open subset of the manifold. We solve this problem locally along any geodesic through the measurement set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信