Yunhe Wang, Xiaojun Yuan, Yibin Ren, Xiaofeng Li, Arnold L. Gordon
{"title":"ENSO对南极海冰线性和非线性可预测性的影响","authors":"Yunhe Wang, Xiaojun Yuan, Yibin Ren, Xiaofeng Li, Arnold L. Gordon","doi":"10.1038/s41612-025-00962-9","DOIUrl":null,"url":null,"abstract":"<p>While the influence of ENSO on Antarctic sea ice variability is well-known, its role in sea ice predictability, both linear and nonlinear, remains unexplored. This study utilizes deep learning models to quantify ENSO’s impact on Antarctic sea ice predictability. We find that ENSO events exert cross-timescale influences on sea ice’s subseasonal linear and nonlinear predictability. Within a 3-week lead time, ice persistence is the primary source of predictability. Beyond this period, ENSO becomes a key source of Antarctic sea ice predictability, with El Niño enhancing ice linear predictability more than La Niña. Specifically, El Niño improves ice linear predictability by 25.6%, 19.6%, and 30.4% in the A-B Sea, Ross Sea, and Indian Ocean, respectively, at an 8-week lead time. La Niña mainly enhances ice nonlinear predictability, particularly in the Ross Sea. We demonstrate that ENSO provides additional sources for Antarctic sea ice predictability primarily through generating more extensive ice anomalies. These insights deepen our understanding of sea ice predictability and are crucial for advancing forecasting models.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"32 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ENSO’s impact on linear and nonlinear predictability of Antarctic sea ice\",\"authors\":\"Yunhe Wang, Xiaojun Yuan, Yibin Ren, Xiaofeng Li, Arnold L. Gordon\",\"doi\":\"10.1038/s41612-025-00962-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>While the influence of ENSO on Antarctic sea ice variability is well-known, its role in sea ice predictability, both linear and nonlinear, remains unexplored. This study utilizes deep learning models to quantify ENSO’s impact on Antarctic sea ice predictability. We find that ENSO events exert cross-timescale influences on sea ice’s subseasonal linear and nonlinear predictability. Within a 3-week lead time, ice persistence is the primary source of predictability. Beyond this period, ENSO becomes a key source of Antarctic sea ice predictability, with El Niño enhancing ice linear predictability more than La Niña. Specifically, El Niño improves ice linear predictability by 25.6%, 19.6%, and 30.4% in the A-B Sea, Ross Sea, and Indian Ocean, respectively, at an 8-week lead time. La Niña mainly enhances ice nonlinear predictability, particularly in the Ross Sea. We demonstrate that ENSO provides additional sources for Antarctic sea ice predictability primarily through generating more extensive ice anomalies. These insights deepen our understanding of sea ice predictability and are crucial for advancing forecasting models.</p>\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1038/s41612-025-00962-9\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-00962-9","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
ENSO’s impact on linear and nonlinear predictability of Antarctic sea ice
While the influence of ENSO on Antarctic sea ice variability is well-known, its role in sea ice predictability, both linear and nonlinear, remains unexplored. This study utilizes deep learning models to quantify ENSO’s impact on Antarctic sea ice predictability. We find that ENSO events exert cross-timescale influences on sea ice’s subseasonal linear and nonlinear predictability. Within a 3-week lead time, ice persistence is the primary source of predictability. Beyond this period, ENSO becomes a key source of Antarctic sea ice predictability, with El Niño enhancing ice linear predictability more than La Niña. Specifically, El Niño improves ice linear predictability by 25.6%, 19.6%, and 30.4% in the A-B Sea, Ross Sea, and Indian Ocean, respectively, at an 8-week lead time. La Niña mainly enhances ice nonlinear predictability, particularly in the Ross Sea. We demonstrate that ENSO provides additional sources for Antarctic sea ice predictability primarily through generating more extensive ice anomalies. These insights deepen our understanding of sea ice predictability and are crucial for advancing forecasting models.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.