通过精密间距工程揭示o3型层状钠正极材料的结构-稳定性相互作用

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Meng Li, Haoxiang Zhuo, Jiuwei Lei, Yaqing Guo, Yifei Yuan, Kuan Wang, Zhou Liao, Wei Xia, Dongsheng Geng, Xueliang Sun, Jiangtao Hu, Biwei Xiao
{"title":"通过精密间距工程揭示o3型层状钠正极材料的结构-稳定性相互作用","authors":"Meng Li, Haoxiang Zhuo, Jiuwei Lei, Yaqing Guo, Yifei Yuan, Kuan Wang, Zhou Liao, Wei Xia, Dongsheng Geng, Xueliang Sun, Jiangtao Hu, Biwei Xiao","doi":"10.1038/s41467-025-57378-5","DOIUrl":null,"url":null,"abstract":"<p>The O3-type layered oxide represents a highly promising candidate for sodium-ion batteries (SIBs). However, the intrinsic stability law of these cathodes remains elusive due to the complex phase transition mechanism and migration of transition metal (TM) ions. Here, we underscore how the ratio between the spacings of alkali metal layer and TM layer (<i>R</i> = d<sub>O-Na-O</sub>/d<sub>O-TM-O</sub>) plays a critical role in determining the structural stability and the corresponding electrochemical performance. We design a peculiar family of Na<sub>x</sub>Mn<sub>0.4</sub>Ni<sub>0.3</sub>Fe<sub>0.15</sub>Li<sub>0.1</sub>Ti<sub>0.05</sub>O<sub>2</sub> (0.55 ≤ x ≤ 1) composition that is thermodynamically stable as an O3-type structure even when <i>R</i> is as high as 1.969, far exceeding 1.62 that normal O3-type structures can reach at most. The high <i>R</i>-value puts the O3 cathode in the preparatory stage for the O3-P3 phase transition, resulting in a rapid yet smooth phase transition process. It also induces a significantly stretched interstitial tetrahedral structure to the Na layer, thus effectively impeding TM migration. Leveraging this mechanism, we reexamine the underlying cause for enhanced stability in P2/O3 hybrid structure. Besides the conventional wisdom of an interlocking effect, the high R-value nature of its O3 sub-phase also plays a pivotal role.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"28 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unravelling the structure-stability interplay of O3-type layered sodium cathode materials via precision spacing engineering\",\"authors\":\"Meng Li, Haoxiang Zhuo, Jiuwei Lei, Yaqing Guo, Yifei Yuan, Kuan Wang, Zhou Liao, Wei Xia, Dongsheng Geng, Xueliang Sun, Jiangtao Hu, Biwei Xiao\",\"doi\":\"10.1038/s41467-025-57378-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The O3-type layered oxide represents a highly promising candidate for sodium-ion batteries (SIBs). However, the intrinsic stability law of these cathodes remains elusive due to the complex phase transition mechanism and migration of transition metal (TM) ions. Here, we underscore how the ratio between the spacings of alkali metal layer and TM layer (<i>R</i> = d<sub>O-Na-O</sub>/d<sub>O-TM-O</sub>) plays a critical role in determining the structural stability and the corresponding electrochemical performance. We design a peculiar family of Na<sub>x</sub>Mn<sub>0.4</sub>Ni<sub>0.3</sub>Fe<sub>0.15</sub>Li<sub>0.1</sub>Ti<sub>0.05</sub>O<sub>2</sub> (0.55 ≤ x ≤ 1) composition that is thermodynamically stable as an O3-type structure even when <i>R</i> is as high as 1.969, far exceeding 1.62 that normal O3-type structures can reach at most. The high <i>R</i>-value puts the O3 cathode in the preparatory stage for the O3-P3 phase transition, resulting in a rapid yet smooth phase transition process. It also induces a significantly stretched interstitial tetrahedral structure to the Na layer, thus effectively impeding TM migration. Leveraging this mechanism, we reexamine the underlying cause for enhanced stability in P2/O3 hybrid structure. Besides the conventional wisdom of an interlocking effect, the high R-value nature of its O3 sub-phase also plays a pivotal role.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-57378-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57378-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

o3型层状氧化物是钠离子电池(sib)极有前途的候选材料。然而,由于复杂的相变机制和过渡金属(TM)离子的迁移,这些阴极的内在稳定性规律仍然难以捉摸。在这里,我们强调了碱金属层与TM层之间的间距比(R = dO-Na-O/dO-TM-O)在决定结构稳定性和相应的电化学性能方面的关键作用。我们设计了一种特殊的NaxMn0.4Ni0.3Fe0.15Li0.1Ti0.05O2(0.55≤x≤1)组成族,即使在R高达1.969时仍能保持o3型结构的热力学稳定,远远超过普通o3型结构最多能达到的1.62。高r值使O3阴极处于O3- p3相变的准备阶段,使得相变过程快速而平稳。它还诱导了Na层明显拉伸的间隙四面体结构,从而有效地阻碍了TM的迁移。利用这一机制,我们重新研究了P2/O3杂化结构稳定性增强的潜在原因。除了传统的联锁效应外,其O3子相的高r值性质也起着关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unravelling the structure-stability interplay of O3-type layered sodium cathode materials via precision spacing engineering

Unravelling the structure-stability interplay of O3-type layered sodium cathode materials via precision spacing engineering

The O3-type layered oxide represents a highly promising candidate for sodium-ion batteries (SIBs). However, the intrinsic stability law of these cathodes remains elusive due to the complex phase transition mechanism and migration of transition metal (TM) ions. Here, we underscore how the ratio between the spacings of alkali metal layer and TM layer (R = dO-Na-O/dO-TM-O) plays a critical role in determining the structural stability and the corresponding electrochemical performance. We design a peculiar family of NaxMn0.4Ni0.3Fe0.15Li0.1Ti0.05O2 (0.55 ≤ x ≤ 1) composition that is thermodynamically stable as an O3-type structure even when R is as high as 1.969, far exceeding 1.62 that normal O3-type structures can reach at most. The high R-value puts the O3 cathode in the preparatory stage for the O3-P3 phase transition, resulting in a rapid yet smooth phase transition process. It also induces a significantly stretched interstitial tetrahedral structure to the Na layer, thus effectively impeding TM migration. Leveraging this mechanism, we reexamine the underlying cause for enhanced stability in P2/O3 hybrid structure. Besides the conventional wisdom of an interlocking effect, the high R-value nature of its O3 sub-phase also plays a pivotal role.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信