Hèctor López-Laguna, Marianna T.P. Favaro, Sara Chellou-Bakkali, Eric Voltà-Durán, Eloi Parladé, Julieta Sánchez, José Luis Corchero, Ugutz Unzueta, Antonio Villaverde, Esther Vázquez
{"title":"柠檬酸盐辅助调节合成淀粉样蛋白的稳定性和分泌能力","authors":"Hèctor López-Laguna, Marianna T.P. Favaro, Sara Chellou-Bakkali, Eric Voltà-Durán, Eloi Parladé, Julieta Sánchez, José Luis Corchero, Ugutz Unzueta, Antonio Villaverde, Esther Vázquez","doi":"10.1021/acsami.4c20784","DOIUrl":null,"url":null,"abstract":"The mammalian endocrine system uses functional amyloids as dynamic depots to store and release protein hormones into the bloodstream. Such depots, acting as secretory granules within the microscale, are formed in specialized cells by the coordination between the ionic, divalent form of zinc (Zn<sup>2+</sup>) and the imidazole ring from accessible His residues. The reversibility of such cross-linking events allows for the release of monomeric or oligomeric forms of the functional protein for biological activity. In vitro, and mimicking such a natural coordination process, synthetic amyloidal granules with secretory properties can be fabricated using selected therapeutic proteins as building blocks. Then, these microparticles act as delivery systems for endocrine-like, sustained protein release, with proven applicability in vaccinology, cancer therapy, regenerative medicine, and as antimicrobial agents. While the temporal profile in which the protein is leaked from the material might be highly relevant to clinically oriented applications, the fine control of such parameters remains unclear. We have explored here how the kinetics of protein release can be regulated by intervening in the storage formulation of the granules, through the concentration of citrate not only as a buffer component and protein stabilizer but also as a chelating agent. The citrate-assisted, time-prolonged regulatable release of proteins, in their functional form, opens a spectrum of possibilities to adjust the preparation of synthetic secretory granules to specific clinical needs.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"210 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Citrate-Assisted Regulation of Protein Stability and Secretability from Synthetic Amyloids\",\"authors\":\"Hèctor López-Laguna, Marianna T.P. Favaro, Sara Chellou-Bakkali, Eric Voltà-Durán, Eloi Parladé, Julieta Sánchez, José Luis Corchero, Ugutz Unzueta, Antonio Villaverde, Esther Vázquez\",\"doi\":\"10.1021/acsami.4c20784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mammalian endocrine system uses functional amyloids as dynamic depots to store and release protein hormones into the bloodstream. Such depots, acting as secretory granules within the microscale, are formed in specialized cells by the coordination between the ionic, divalent form of zinc (Zn<sup>2+</sup>) and the imidazole ring from accessible His residues. The reversibility of such cross-linking events allows for the release of monomeric or oligomeric forms of the functional protein for biological activity. In vitro, and mimicking such a natural coordination process, synthetic amyloidal granules with secretory properties can be fabricated using selected therapeutic proteins as building blocks. Then, these microparticles act as delivery systems for endocrine-like, sustained protein release, with proven applicability in vaccinology, cancer therapy, regenerative medicine, and as antimicrobial agents. While the temporal profile in which the protein is leaked from the material might be highly relevant to clinically oriented applications, the fine control of such parameters remains unclear. We have explored here how the kinetics of protein release can be regulated by intervening in the storage formulation of the granules, through the concentration of citrate not only as a buffer component and protein stabilizer but also as a chelating agent. The citrate-assisted, time-prolonged regulatable release of proteins, in their functional form, opens a spectrum of possibilities to adjust the preparation of synthetic secretory granules to specific clinical needs.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"210 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c20784\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c20784","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Citrate-Assisted Regulation of Protein Stability and Secretability from Synthetic Amyloids
The mammalian endocrine system uses functional amyloids as dynamic depots to store and release protein hormones into the bloodstream. Such depots, acting as secretory granules within the microscale, are formed in specialized cells by the coordination between the ionic, divalent form of zinc (Zn2+) and the imidazole ring from accessible His residues. The reversibility of such cross-linking events allows for the release of monomeric or oligomeric forms of the functional protein for biological activity. In vitro, and mimicking such a natural coordination process, synthetic amyloidal granules with secretory properties can be fabricated using selected therapeutic proteins as building blocks. Then, these microparticles act as delivery systems for endocrine-like, sustained protein release, with proven applicability in vaccinology, cancer therapy, regenerative medicine, and as antimicrobial agents. While the temporal profile in which the protein is leaked from the material might be highly relevant to clinically oriented applications, the fine control of such parameters remains unclear. We have explored here how the kinetics of protein release can be regulated by intervening in the storage formulation of the granules, through the concentration of citrate not only as a buffer component and protein stabilizer but also as a chelating agent. The citrate-assisted, time-prolonged regulatable release of proteins, in their functional form, opens a spectrum of possibilities to adjust the preparation of synthetic secretory granules to specific clinical needs.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.