凝胶电解质互指使三维锌电极稳定的高面积容量循环

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yuan Shang, Ravindra Kokate, Patrick Tung, Haoyin Zhong, Erlantz Lizundia, Francisco J. Trujillo, Priyank Kumar and Dipan Kundu
{"title":"凝胶电解质互指使三维锌电极稳定的高面积容量循环","authors":"Yuan Shang, Ravindra Kokate, Patrick Tung, Haoyin Zhong, Erlantz Lizundia, Francisco J. Trujillo, Priyank Kumar and Dipan Kundu","doi":"10.1039/D4TA09006C","DOIUrl":null,"url":null,"abstract":"<p >Inferior rechargeability of the metallic zinc anode, especially under high areal capacities and moderate to high current densities, remains a significant bottleneck for developing scalable aqueous zinc-ion batteries. While three-dimensional (3D) porous zinc anodes can mitigate high local current density and enhance deposition kinetics, limited electrolyte percolation within the 3D framework with conventional liquid electrolyte-soaked separator leads to surface-concentrated ion flux, which confines zinc nucleation and growth to the uppermost surface. This results in early short-circuit events mediated by dendrites. Here, electrolyte-interdigitation with a biopolymer hydrogel electrolyte is presented as a facile strategy, which by design enables complete electrolyte percolation within the porous and tortuous structure of the 3D zinc and uniform mass transport across the whole electrode structure. The increased accessible surface area and interconnected transport pathways effectively regulate zinc plating/stripping, thus maintaining the structural integrity upon cycling. As a result, the integrated design enables extended zinc rechargeability and a cumulative cycling capacity of 1680 mA h cm<small><sup>−2</sup></small> under demanding 5 mA cm<small><sup>−2</sup></small>–5 mA h cm<small><sup>−2</sup></small> conditions. Suppressed corrosion and dendrite inhibition for the interdigitated anode also leads to excellent rate capability and stability of the full-cell, highlighting a significant advance in the field of 3D zinc anode design.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 13","pages":" 9555-9565"},"PeriodicalIF":9.5000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d4ta09006c?page=search","citationCount":"0","resultStr":"{\"title\":\"Gel electrolyte interdigitation enables stable high areal capacity cycling of the 3D Zn electrode†\",\"authors\":\"Yuan Shang, Ravindra Kokate, Patrick Tung, Haoyin Zhong, Erlantz Lizundia, Francisco J. Trujillo, Priyank Kumar and Dipan Kundu\",\"doi\":\"10.1039/D4TA09006C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Inferior rechargeability of the metallic zinc anode, especially under high areal capacities and moderate to high current densities, remains a significant bottleneck for developing scalable aqueous zinc-ion batteries. While three-dimensional (3D) porous zinc anodes can mitigate high local current density and enhance deposition kinetics, limited electrolyte percolation within the 3D framework with conventional liquid electrolyte-soaked separator leads to surface-concentrated ion flux, which confines zinc nucleation and growth to the uppermost surface. This results in early short-circuit events mediated by dendrites. Here, electrolyte-interdigitation with a biopolymer hydrogel electrolyte is presented as a facile strategy, which by design enables complete electrolyte percolation within the porous and tortuous structure of the 3D zinc and uniform mass transport across the whole electrode structure. The increased accessible surface area and interconnected transport pathways effectively regulate zinc plating/stripping, thus maintaining the structural integrity upon cycling. As a result, the integrated design enables extended zinc rechargeability and a cumulative cycling capacity of 1680 mA h cm<small><sup>−2</sup></small> under demanding 5 mA cm<small><sup>−2</sup></small>–5 mA h cm<small><sup>−2</sup></small> conditions. Suppressed corrosion and dendrite inhibition for the interdigitated anode also leads to excellent rate capability and stability of the full-cell, highlighting a significant advance in the field of 3D zinc anode design.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 13\",\"pages\":\" 9555-9565\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d4ta09006c?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta09006c\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta09006c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

金属锌阳极的可充电性较差,特别是在高面积容量和中高电流密度下,仍然是发展可扩展水性锌离子电池的一个重要瓶颈。虽然三维(3D)多孔锌阳极可以缓解高局部电流密度并增强沉积动力学,但传统液体电解质浸泡分离器在3D框架内的有限电解质渗透导致表面离子通量集中,这限制了锌的成核和生长到最表面。这导致由树突介导的早期短路事件。在这里,电解质与生物聚合物水凝胶电解质的交叉是一种简单的策略,通过设计可以使电解质完全渗透到3D锌的多孔和弯曲结构中,并在整个电极结构中均匀地传递质量。增加的可达表面积和相互连接的运输通道有效地调节了锌的电镀/剥离,从而在循环时保持结构的完整性。因此,在5毫安- 5毫安- 5毫安的条件下,集成的设计可以延长锌的可充电性和1680毫安-厘米- 2的累积循环容量。互指阳极的抑制腐蚀和抑制枝晶也导致了优异的速率能力和全电池的稳定性,突出了3D锌阳极设计领域的重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Gel electrolyte interdigitation enables stable high areal capacity cycling of the 3D Zn electrode†

Gel electrolyte interdigitation enables stable high areal capacity cycling of the 3D Zn electrode†

Inferior rechargeability of the metallic zinc anode, especially under high areal capacities and moderate to high current densities, remains a significant bottleneck for developing scalable aqueous zinc-ion batteries. While three-dimensional (3D) porous zinc anodes can mitigate high local current density and enhance deposition kinetics, limited electrolyte percolation within the 3D framework with conventional liquid electrolyte-soaked separator leads to surface-concentrated ion flux, which confines zinc nucleation and growth to the uppermost surface. This results in early short-circuit events mediated by dendrites. Here, electrolyte-interdigitation with a biopolymer hydrogel electrolyte is presented as a facile strategy, which by design enables complete electrolyte percolation within the porous and tortuous structure of the 3D zinc and uniform mass transport across the whole electrode structure. The increased accessible surface area and interconnected transport pathways effectively regulate zinc plating/stripping, thus maintaining the structural integrity upon cycling. As a result, the integrated design enables extended zinc rechargeability and a cumulative cycling capacity of 1680 mA h cm−2 under demanding 5 mA cm−2–5 mA h cm−2 conditions. Suppressed corrosion and dendrite inhibition for the interdigitated anode also leads to excellent rate capability and stability of the full-cell, highlighting a significant advance in the field of 3D zinc anode design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信