用于航空航天和光电子应用的创新聚酰亚胺改性:热、机械和光学性能的协同增强

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yuwei Chen, Yidong Liu, Yonggang Min
{"title":"用于航空航天和光电子应用的创新聚酰亚胺改性:热、机械和光学性能的协同增强","authors":"Yuwei Chen, Yidong Liu, Yonggang Min","doi":"10.1021/acsami.4c21102","DOIUrl":null,"url":null,"abstract":"This study pioneers a molecular topology engineering strategy by incorporating a twisted diamine motif into polyimide (PI) backbones, achieving an unprecedented integration of thermal stability, mechanical robustness, and optoelectronic functionality that surpasses conventional high-performance PIs. Unlike traditional PIs constrained by performance trade-offs (e.g., compromised flexibility for thermal resistance or sacrificed bulk properties for functionalization), the modified PI demonstrates a breakthrough balance: thermal degradation temperature (T5%) exceeding 560 °C, glass transition temperature (Tg) of 380 °C, and tensile strength of 160–180 MPa. Crucially, it exhibits green fluorescence (505–515 nm) under 365/467 nm excitation─a previously unreported optical capability in PIs. Molecular dynamics/density functional theory (MD/DFT) simulations coupled with UV–vis and mechanical analyses reveal that the twisted conformation induces molecular orbital reorganization and optimized stress distribution, establishing a design framework for multifunctional PIs. In contrast to additive-dependent modification approaches, this topology-driven strategy enables intrinsic multifunctionality while maintaining compatibility with industrial polymerization processes, overcoming scalability challenges in functional PI production. The work redefines PI applications in aerospace composites, optoelectronic systems, and next-gen sensors under extreme conditions, while providing a paradigm for developing performance-integrated polymers through rational topological design.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"19 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative Polyimide Modifications for Aerospace and Optoelectronic Applications: Synergistic Enhancements in Thermal, Mechanical, and Optical Properties\",\"authors\":\"Yuwei Chen, Yidong Liu, Yonggang Min\",\"doi\":\"10.1021/acsami.4c21102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study pioneers a molecular topology engineering strategy by incorporating a twisted diamine motif into polyimide (PI) backbones, achieving an unprecedented integration of thermal stability, mechanical robustness, and optoelectronic functionality that surpasses conventional high-performance PIs. Unlike traditional PIs constrained by performance trade-offs (e.g., compromised flexibility for thermal resistance or sacrificed bulk properties for functionalization), the modified PI demonstrates a breakthrough balance: thermal degradation temperature (T5%) exceeding 560 °C, glass transition temperature (Tg) of 380 °C, and tensile strength of 160–180 MPa. Crucially, it exhibits green fluorescence (505–515 nm) under 365/467 nm excitation─a previously unreported optical capability in PIs. Molecular dynamics/density functional theory (MD/DFT) simulations coupled with UV–vis and mechanical analyses reveal that the twisted conformation induces molecular orbital reorganization and optimized stress distribution, establishing a design framework for multifunctional PIs. In contrast to additive-dependent modification approaches, this topology-driven strategy enables intrinsic multifunctionality while maintaining compatibility with industrial polymerization processes, overcoming scalability challenges in functional PI production. The work redefines PI applications in aerospace composites, optoelectronic systems, and next-gen sensors under extreme conditions, while providing a paradigm for developing performance-integrated polymers through rational topological design.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c21102\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c21102","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项研究首创了一种分子拓扑工程策略,将扭曲的二胺基团纳入聚酰亚胺(PI)骨架,实现了热稳定性、机械坚固性和光电功能的空前整合,超越了传统的高性能 PI。与传统聚酰亚胺受限于性能权衡(例如,为耐热性而牺牲柔韧性,或为功能化而牺牲体积特性)不同,改性聚酰亚胺实现了突破性平衡:热降解温度(T5%)超过 560 °C,玻璃化转变温度(Tg)为 380 °C,拉伸强度为 160-180 兆帕。最重要的是,在 365/467 纳米激发下,它还能发出绿色荧光(505-515 纳米)--这是以前未曾报道过的聚氨酯光学性能。分子动力学/密度泛函理论(MD/DFT)模拟以及紫外-可见光和机械分析表明,扭曲构象可诱导分子轨道重组和优化应力分布,从而建立了多功能 PIs 的设计框架。与依赖添加剂的改性方法相比,这种拓扑结构驱动的策略在保持与工业聚合工艺兼容的同时,还实现了内在的多功能性,克服了功能性 PI 生产中的可扩展性难题。这项研究重新定义了 PI 在极端条件下的航空航天复合材料、光电系统和新一代传感器中的应用,同时为通过合理的拓扑设计开发性能集成聚合物提供了范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Innovative Polyimide Modifications for Aerospace and Optoelectronic Applications: Synergistic Enhancements in Thermal, Mechanical, and Optical Properties

Innovative Polyimide Modifications for Aerospace and Optoelectronic Applications: Synergistic Enhancements in Thermal, Mechanical, and Optical Properties
This study pioneers a molecular topology engineering strategy by incorporating a twisted diamine motif into polyimide (PI) backbones, achieving an unprecedented integration of thermal stability, mechanical robustness, and optoelectronic functionality that surpasses conventional high-performance PIs. Unlike traditional PIs constrained by performance trade-offs (e.g., compromised flexibility for thermal resistance or sacrificed bulk properties for functionalization), the modified PI demonstrates a breakthrough balance: thermal degradation temperature (T5%) exceeding 560 °C, glass transition temperature (Tg) of 380 °C, and tensile strength of 160–180 MPa. Crucially, it exhibits green fluorescence (505–515 nm) under 365/467 nm excitation─a previously unreported optical capability in PIs. Molecular dynamics/density functional theory (MD/DFT) simulations coupled with UV–vis and mechanical analyses reveal that the twisted conformation induces molecular orbital reorganization and optimized stress distribution, establishing a design framework for multifunctional PIs. In contrast to additive-dependent modification approaches, this topology-driven strategy enables intrinsic multifunctionality while maintaining compatibility with industrial polymerization processes, overcoming scalability challenges in functional PI production. The work redefines PI applications in aerospace composites, optoelectronic systems, and next-gen sensors under extreme conditions, while providing a paradigm for developing performance-integrated polymers through rational topological design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信