卡罗里安几何学延展了视界

IF 3.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Laurent Freidel and Puttarak Jai-akson
{"title":"卡罗里安几何学延展了视界","authors":"Laurent Freidel and Puttarak Jai-akson","doi":"10.1088/1361-6382/adaf6e","DOIUrl":null,"url":null,"abstract":"In this paper, we present a comprehensive toolbox for studying Carrollian stretched horizons, encompassing their geometry, dynamics, symplectic geometry, symmetries, and corresponding Noether charges. We introduce a precise definition of ruled stretched Carrollian structures (sCarrollian structures) on any surface, generalizing the conventional Carrollian structures of null surfaces, along with the notions of sCarrollian connection and sCarrollian stress tensor. Our approach unifies the sCarrollian (intrinsic) and stretched horizon (embedding) perspectives, providing a universal framework for any causal surface, whether timelike or null. We express the Einstein equations in sCarrollian variables and discuss the phase space symplectic structure of the sCarrollian geometry. Through Noether’s theorem, we derive the Einstein equation and canonical charge and compute the evolution of the canonical charge along the transverse (radial) direction. The latter can be interpreted as a spin-2 symmetry charge. Our framework establishes a novel link between gravity on stretched horizons and Carrollian fluid dynamics and unifies various causal surfaces studied in the literature, including non-expanding and isolated horizons. We expect this work to provide insights into the hydrodynamical description of black holes and the quantization of null surfaces.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"15 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometry of Carrollian stretched horizons\",\"authors\":\"Laurent Freidel and Puttarak Jai-akson\",\"doi\":\"10.1088/1361-6382/adaf6e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a comprehensive toolbox for studying Carrollian stretched horizons, encompassing their geometry, dynamics, symplectic geometry, symmetries, and corresponding Noether charges. We introduce a precise definition of ruled stretched Carrollian structures (sCarrollian structures) on any surface, generalizing the conventional Carrollian structures of null surfaces, along with the notions of sCarrollian connection and sCarrollian stress tensor. Our approach unifies the sCarrollian (intrinsic) and stretched horizon (embedding) perspectives, providing a universal framework for any causal surface, whether timelike or null. We express the Einstein equations in sCarrollian variables and discuss the phase space symplectic structure of the sCarrollian geometry. Through Noether’s theorem, we derive the Einstein equation and canonical charge and compute the evolution of the canonical charge along the transverse (radial) direction. The latter can be interpreted as a spin-2 symmetry charge. Our framework establishes a novel link between gravity on stretched horizons and Carrollian fluid dynamics and unifies various causal surfaces studied in the literature, including non-expanding and isolated horizons. We expect this work to provide insights into the hydrodynamical description of black holes and the quantization of null surfaces.\",\"PeriodicalId\":10282,\"journal\":{\"name\":\"Classical and Quantum Gravity\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Classical and Quantum Gravity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6382/adaf6e\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/adaf6e","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一个研究卡罗利拉伸视界的综合工具箱,包括它们的几何、动力学、辛几何、对称性和相应的诺特电荷。我们引入了任意曲面上的正则拉伸卡罗利结构(sCarrollian structures)的精确定义,推广了零曲面上的常规卡罗利结构,以及sCarrollian连接和sCarrollian应力张量的概念。我们的方法统一了sCarrollian(内在的)和拉伸视界(嵌入的)视角,为任何因果表面提供了一个通用的框架,无论是类时间的还是空的。我们用斯卡罗变量表示爱因斯坦方程,并讨论了斯卡罗几何的相空间辛结构。通过诺特定理,导出了爱因斯坦方程和正则电荷,并计算了正则电荷沿横向(径向)方向的演化。后者可以解释为自旋为2的对称电荷。我们的框架在拉伸视界上的重力和卡罗流体动力学之间建立了一种新的联系,并统一了文献中研究的各种因果曲面,包括非扩展视界和孤立视界。我们期望这项工作能够为黑洞的流体动力学描述和零表面的量化提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometry of Carrollian stretched horizons
In this paper, we present a comprehensive toolbox for studying Carrollian stretched horizons, encompassing their geometry, dynamics, symplectic geometry, symmetries, and corresponding Noether charges. We introduce a precise definition of ruled stretched Carrollian structures (sCarrollian structures) on any surface, generalizing the conventional Carrollian structures of null surfaces, along with the notions of sCarrollian connection and sCarrollian stress tensor. Our approach unifies the sCarrollian (intrinsic) and stretched horizon (embedding) perspectives, providing a universal framework for any causal surface, whether timelike or null. We express the Einstein equations in sCarrollian variables and discuss the phase space symplectic structure of the sCarrollian geometry. Through Noether’s theorem, we derive the Einstein equation and canonical charge and compute the evolution of the canonical charge along the transverse (radial) direction. The latter can be interpreted as a spin-2 symmetry charge. Our framework establishes a novel link between gravity on stretched horizons and Carrollian fluid dynamics and unifies various causal surfaces studied in the literature, including non-expanding and isolated horizons. We expect this work to provide insights into the hydrodynamical description of black holes and the quantization of null surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信