Ni(II)N2S2 分子催化剂的异源 HER 活性

IF 3.5 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Mohan Paudel, Sanjit Karki, Narayan Acharya, Sashil Chapagain, Johann V. Hemmer, Dillon T. Hofsommer, Gautam Gupta, Robert M. Buchanan, Craig A. Grapperhaus
{"title":"Ni(II)N2S2 分子催化剂的异源 HER 活性","authors":"Mohan Paudel, Sanjit Karki, Narayan Acharya, Sashil Chapagain, Johann V. Hemmer, Dillon T. Hofsommer, Gautam Gupta, Robert M. Buchanan, Craig A. Grapperhaus","doi":"10.1039/d5dt00005j","DOIUrl":null,"url":null,"abstract":"Green hydrogen, generated through the electrolysis of water using renewable energy sources, is recognized as a highly promising alternative to fossil fuels in the pursuit of net-zero carbon emissions. Electrocatalysts are crucial for reducing overpotentials and enhancing the efficiency of the hydrogen evolution reaction (HER) for the production of green hydrogen. Homogeneous HER serves as a primary method to assess the activity and mechanisms of novel non-precious molecular electrocatalysts in pursuit of replacing precious platinum standards. However, these catalysts can sometimes exhibit instability under reductive and acidic conditions during homogeneous HER. Thus, it is also essential to evaluate catalysts through heterogeneous HER for initial assessment and practical application. In this study, we examine a series of structurally related N<small><sub>2</sub></small>S<small><sub>2</sub></small> chelated Ni(<small>II</small>) complexes, which are tailored to optimize the basicity of the catalyst for heterogeneous HER activity. These complexes are insoluble in 0.5 M H<small><sub>2</sub></small>SO<small><sub>4</sub></small>, and the films formed after catalyst deposition on glassy carbon electrodes (GCEs) exhibit catalytic currents during HER, demonstrating moderate to good overpotentials, Tafel slopes, and charge transfer resistance. Furthermore, we observe the anticipated structure–activity relationship that arises from tuning the catalyst structure. The complexes maintain stability over extended reductive cycling, as confirmed by various surface characterization techniques, including SEM, EDX, XPS, and XRD. This study highlights the potential of utilizing catalyst basicity to develop efficient and robust heterogeneous HER catalysts.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"51 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogenous HER activity of Ni(II)N2S2 molecular catalysts\",\"authors\":\"Mohan Paudel, Sanjit Karki, Narayan Acharya, Sashil Chapagain, Johann V. Hemmer, Dillon T. Hofsommer, Gautam Gupta, Robert M. Buchanan, Craig A. Grapperhaus\",\"doi\":\"10.1039/d5dt00005j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Green hydrogen, generated through the electrolysis of water using renewable energy sources, is recognized as a highly promising alternative to fossil fuels in the pursuit of net-zero carbon emissions. Electrocatalysts are crucial for reducing overpotentials and enhancing the efficiency of the hydrogen evolution reaction (HER) for the production of green hydrogen. Homogeneous HER serves as a primary method to assess the activity and mechanisms of novel non-precious molecular electrocatalysts in pursuit of replacing precious platinum standards. However, these catalysts can sometimes exhibit instability under reductive and acidic conditions during homogeneous HER. Thus, it is also essential to evaluate catalysts through heterogeneous HER for initial assessment and practical application. In this study, we examine a series of structurally related N<small><sub>2</sub></small>S<small><sub>2</sub></small> chelated Ni(<small>II</small>) complexes, which are tailored to optimize the basicity of the catalyst for heterogeneous HER activity. These complexes are insoluble in 0.5 M H<small><sub>2</sub></small>SO<small><sub>4</sub></small>, and the films formed after catalyst deposition on glassy carbon electrodes (GCEs) exhibit catalytic currents during HER, demonstrating moderate to good overpotentials, Tafel slopes, and charge transfer resistance. Furthermore, we observe the anticipated structure–activity relationship that arises from tuning the catalyst structure. The complexes maintain stability over extended reductive cycling, as confirmed by various surface characterization techniques, including SEM, EDX, XPS, and XRD. This study highlights the potential of utilizing catalyst basicity to develop efficient and robust heterogeneous HER catalysts.\",\"PeriodicalId\":71,\"journal\":{\"name\":\"Dalton Transactions\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dalton Transactions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5dt00005j\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5dt00005j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Heterogenous HER activity of Ni(II)N2S2 molecular catalysts

Heterogenous HER activity of Ni(II)N2S2 molecular catalysts
Green hydrogen, generated through the electrolysis of water using renewable energy sources, is recognized as a highly promising alternative to fossil fuels in the pursuit of net-zero carbon emissions. Electrocatalysts are crucial for reducing overpotentials and enhancing the efficiency of the hydrogen evolution reaction (HER) for the production of green hydrogen. Homogeneous HER serves as a primary method to assess the activity and mechanisms of novel non-precious molecular electrocatalysts in pursuit of replacing precious platinum standards. However, these catalysts can sometimes exhibit instability under reductive and acidic conditions during homogeneous HER. Thus, it is also essential to evaluate catalysts through heterogeneous HER for initial assessment and practical application. In this study, we examine a series of structurally related N2S2 chelated Ni(II) complexes, which are tailored to optimize the basicity of the catalyst for heterogeneous HER activity. These complexes are insoluble in 0.5 M H2SO4, and the films formed after catalyst deposition on glassy carbon electrodes (GCEs) exhibit catalytic currents during HER, demonstrating moderate to good overpotentials, Tafel slopes, and charge transfer resistance. Furthermore, we observe the anticipated structure–activity relationship that arises from tuning the catalyst structure. The complexes maintain stability over extended reductive cycling, as confirmed by various surface characterization techniques, including SEM, EDX, XPS, and XRD. This study highlights the potential of utilizing catalyst basicity to develop efficient and robust heterogeneous HER catalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dalton Transactions
Dalton Transactions 化学-无机化学与核化学
CiteScore
6.60
自引率
7.50%
发文量
1832
审稿时长
1.5 months
期刊介绍: Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信