{"title":"人工心脏瓣膜用静电纺各向异性纤维增强复合材料。","authors":"Xiuling Yang, Yifeng Chen, Qijun Wu, Haoqi Yang, Gaigai Duan, Qiliang Fu, Haonan He, Peng Zhang, Jian Ji and Shaohua Jiang","doi":"10.1039/D4TB02329C","DOIUrl":null,"url":null,"abstract":"<p >Anisotropic composite valves that approximate natural heart valves are essential for the successful construction of tissue-engineered heart valves. In this work, anisotropic nylon (polyamides, PA) fiber membranes were prepared <em>via</em> electrospinning and further composited with thermoplastic polyurethane (TPU) by the impregnation method to obtain anisotropic PA/TPU composite valves. Young's modulus of the PA/TPU composite valves in the axial and radial directions along the fibers was 85.07 ± 4.22 MPa and 28.72 ± 1.16 MPa, respectively. The anisotropic PA/TPU composite valve exhibited excellent anisotropy, and its anisotropy ratio was 3.03, which was close to that of natural valves. Besides, the anisotropic PA/TPU composite valve exhibits high transparency (∼87%). The <em>in vitro</em> experiments revealed that anisotropic PA/TPU composite valves have better resistance to calcification and good blood compatibility compared with anisotropic nylon fiber membranes. Moreover, the hydrophilicity presented by the anisotropic PA/TPU composite valve reduced the adhesion of calcified particles. The good anticoagulant properties exhibited by the anisotropic PA/TPU composite valve effectively reduced the formation of thrombus after implantation. Cellular experiments and subcutaneous implantation experiments in rats showed that anisotropic PA/TPU composite valves exhibit cellular nontoxicity and good biocompatibility, contributing to cellular differentiation and growth. This preparation method has great potential in preparing anisotropic composite valves.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 12","pages":" 3918-3929"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrospun anisotropic fiber reinforced composites for artificial heart valves\",\"authors\":\"Xiuling Yang, Yifeng Chen, Qijun Wu, Haoqi Yang, Gaigai Duan, Qiliang Fu, Haonan He, Peng Zhang, Jian Ji and Shaohua Jiang\",\"doi\":\"10.1039/D4TB02329C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Anisotropic composite valves that approximate natural heart valves are essential for the successful construction of tissue-engineered heart valves. In this work, anisotropic nylon (polyamides, PA) fiber membranes were prepared <em>via</em> electrospinning and further composited with thermoplastic polyurethane (TPU) by the impregnation method to obtain anisotropic PA/TPU composite valves. Young's modulus of the PA/TPU composite valves in the axial and radial directions along the fibers was 85.07 ± 4.22 MPa and 28.72 ± 1.16 MPa, respectively. The anisotropic PA/TPU composite valve exhibited excellent anisotropy, and its anisotropy ratio was 3.03, which was close to that of natural valves. Besides, the anisotropic PA/TPU composite valve exhibits high transparency (∼87%). The <em>in vitro</em> experiments revealed that anisotropic PA/TPU composite valves have better resistance to calcification and good blood compatibility compared with anisotropic nylon fiber membranes. Moreover, the hydrophilicity presented by the anisotropic PA/TPU composite valve reduced the adhesion of calcified particles. The good anticoagulant properties exhibited by the anisotropic PA/TPU composite valve effectively reduced the formation of thrombus after implantation. Cellular experiments and subcutaneous implantation experiments in rats showed that anisotropic PA/TPU composite valves exhibit cellular nontoxicity and good biocompatibility, contributing to cellular differentiation and growth. This preparation method has great potential in preparing anisotropic composite valves.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 12\",\"pages\":\" 3918-3929\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02329c\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02329c","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Electrospun anisotropic fiber reinforced composites for artificial heart valves
Anisotropic composite valves that approximate natural heart valves are essential for the successful construction of tissue-engineered heart valves. In this work, anisotropic nylon (polyamides, PA) fiber membranes were prepared via electrospinning and further composited with thermoplastic polyurethane (TPU) by the impregnation method to obtain anisotropic PA/TPU composite valves. Young's modulus of the PA/TPU composite valves in the axial and radial directions along the fibers was 85.07 ± 4.22 MPa and 28.72 ± 1.16 MPa, respectively. The anisotropic PA/TPU composite valve exhibited excellent anisotropy, and its anisotropy ratio was 3.03, which was close to that of natural valves. Besides, the anisotropic PA/TPU composite valve exhibits high transparency (∼87%). The in vitro experiments revealed that anisotropic PA/TPU composite valves have better resistance to calcification and good blood compatibility compared with anisotropic nylon fiber membranes. Moreover, the hydrophilicity presented by the anisotropic PA/TPU composite valve reduced the adhesion of calcified particles. The good anticoagulant properties exhibited by the anisotropic PA/TPU composite valve effectively reduced the formation of thrombus after implantation. Cellular experiments and subcutaneous implantation experiments in rats showed that anisotropic PA/TPU composite valves exhibit cellular nontoxicity and good biocompatibility, contributing to cellular differentiation and growth. This preparation method has great potential in preparing anisotropic composite valves.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices