Daniel S Bejan, Rachel E Lacoursiere, Jonathan N Pruneda, Michael S Cohen
{"title":"Ubiquitin is directly linked via an ester to protein-conjugated mono-ADP-ribose.","authors":"Daniel S Bejan, Rachel E Lacoursiere, Jonathan N Pruneda, Michael S Cohen","doi":"10.1038/s44318-025-00391-7","DOIUrl":null,"url":null,"abstract":"<p><p>The prevailing view on post-translational modifications (PTMs) is that a single amino acid is modified with a single PTM at any given time. However, recent work has demonstrated crosstalk between different PTMs, some occurring on the same residue. Such interplay is seen with ADP-ribosylation and ubiquitylation. For example, DELTEX E3 ligases were reported to ubiquitylate a hydroxyl group on free NAD<sup>+</sup> and ADP-ribose in vitro, generating a noncanonical ubiquitin ester-linked species. In this report, we show, for the first time, that this dual PTM occurs in cells on mono-ADP-ribosylated (MARylated) PARP10 on Glu/Asp sites to form a MAR ubiquitin ester. We call this process mono-ADP-ribosyl ubiquitylation or MARUbylation. Using chemical and enzymatic treatments, including a newly characterized bacterial deubiquitinase with esterase-specific activity, we discovered that multiple PARPs are MARUbylated and extended with K11-linked polyubiquitin chains when exogenously expressed. Finally, we show that in response to type I interferon stimulation, MARUbylation can occur endogenously on PARP targets. Thus, MARUbylation represents a new dual PTM that broadens our understanding of the function of PARP-mediated ADP-ribosylation in cells.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-025-00391-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ubiquitin is directly linked via an ester to protein-conjugated mono-ADP-ribose.
The prevailing view on post-translational modifications (PTMs) is that a single amino acid is modified with a single PTM at any given time. However, recent work has demonstrated crosstalk between different PTMs, some occurring on the same residue. Such interplay is seen with ADP-ribosylation and ubiquitylation. For example, DELTEX E3 ligases were reported to ubiquitylate a hydroxyl group on free NAD+ and ADP-ribose in vitro, generating a noncanonical ubiquitin ester-linked species. In this report, we show, for the first time, that this dual PTM occurs in cells on mono-ADP-ribosylated (MARylated) PARP10 on Glu/Asp sites to form a MAR ubiquitin ester. We call this process mono-ADP-ribosyl ubiquitylation or MARUbylation. Using chemical and enzymatic treatments, including a newly characterized bacterial deubiquitinase with esterase-specific activity, we discovered that multiple PARPs are MARUbylated and extended with K11-linked polyubiquitin chains when exogenously expressed. Finally, we show that in response to type I interferon stimulation, MARUbylation can occur endogenously on PARP targets. Thus, MARUbylation represents a new dual PTM that broadens our understanding of the function of PARP-mediated ADP-ribosylation in cells.
期刊介绍:
The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance.
With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.