Yi Jiang, Haoyu Wang, Kevin M Boergens, Norman Rzepka, Fangfang Wang, Yunfeng Hua
{"title":"使用webKnossos在电子显微镜体积中有效地绘制线粒体的细胞范围。","authors":"Yi Jiang, Haoyu Wang, Kevin M Boergens, Norman Rzepka, Fangfang Wang, Yunfeng Hua","doi":"10.1016/j.crmeth.2025.100989","DOIUrl":null,"url":null,"abstract":"<p><p>Recent technical advances in volume electron microscopy (vEM) and artificial-intelligence-assisted image processing have facilitated high-throughput quantifications of cellular structures, such as mitochondria, that are ubiquitous and morphologically diversified. A still often-overlooked computational challenge is to assign a cell identity to numerous mitochondrial instances, for which both mitochondrial and cell membrane contouring used to be required. Here, we present a vEM reconstruction procedure (called mito-SegEM) that utilizes virtual-path-based annotation to assign automatically segmented mitochondrial instances at the cellular scale, therefore bypassing the requirement of membrane contouring. The embedded toolset in webKnossos (an open-source online annotation platform) is optimized for fast annotation, visualization, and proofreading of cellular organelle networks. We demonstrate the broad applications of mito-SegEM on volumetric datasets from various tissues, including the brain, intestine, and testis, to achieve an accurate and efficient reconstruction of mitochondria in a use-dependent fashion.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":"5 2","pages":"100989"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955265/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficient cell-wide mapping of mitochondria in electron microscopic volumes using webKnossos.\",\"authors\":\"Yi Jiang, Haoyu Wang, Kevin M Boergens, Norman Rzepka, Fangfang Wang, Yunfeng Hua\",\"doi\":\"10.1016/j.crmeth.2025.100989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent technical advances in volume electron microscopy (vEM) and artificial-intelligence-assisted image processing have facilitated high-throughput quantifications of cellular structures, such as mitochondria, that are ubiquitous and morphologically diversified. A still often-overlooked computational challenge is to assign a cell identity to numerous mitochondrial instances, for which both mitochondrial and cell membrane contouring used to be required. Here, we present a vEM reconstruction procedure (called mito-SegEM) that utilizes virtual-path-based annotation to assign automatically segmented mitochondrial instances at the cellular scale, therefore bypassing the requirement of membrane contouring. The embedded toolset in webKnossos (an open-source online annotation platform) is optimized for fast annotation, visualization, and proofreading of cellular organelle networks. We demonstrate the broad applications of mito-SegEM on volumetric datasets from various tissues, including the brain, intestine, and testis, to achieve an accurate and efficient reconstruction of mitochondria in a use-dependent fashion.</p>\",\"PeriodicalId\":29773,\"journal\":{\"name\":\"Cell Reports Methods\",\"volume\":\"5 2\",\"pages\":\"100989\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955265/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crmeth.2025.100989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.100989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Efficient cell-wide mapping of mitochondria in electron microscopic volumes using webKnossos.
Recent technical advances in volume electron microscopy (vEM) and artificial-intelligence-assisted image processing have facilitated high-throughput quantifications of cellular structures, such as mitochondria, that are ubiquitous and morphologically diversified. A still often-overlooked computational challenge is to assign a cell identity to numerous mitochondrial instances, for which both mitochondrial and cell membrane contouring used to be required. Here, we present a vEM reconstruction procedure (called mito-SegEM) that utilizes virtual-path-based annotation to assign automatically segmented mitochondrial instances at the cellular scale, therefore bypassing the requirement of membrane contouring. The embedded toolset in webKnossos (an open-source online annotation platform) is optimized for fast annotation, visualization, and proofreading of cellular organelle networks. We demonstrate the broad applications of mito-SegEM on volumetric datasets from various tissues, including the brain, intestine, and testis, to achieve an accurate and efficient reconstruction of mitochondria in a use-dependent fashion.