使用webKnossos在电子显微镜体积中有效地绘制线粒体的细胞范围。

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS
Yi Jiang, Haoyu Wang, Kevin M Boergens, Norman Rzepka, Fangfang Wang, Yunfeng Hua
{"title":"使用webKnossos在电子显微镜体积中有效地绘制线粒体的细胞范围。","authors":"Yi Jiang, Haoyu Wang, Kevin M Boergens, Norman Rzepka, Fangfang Wang, Yunfeng Hua","doi":"10.1016/j.crmeth.2025.100989","DOIUrl":null,"url":null,"abstract":"<p><p>Recent technical advances in volume electron microscopy (vEM) and artificial-intelligence-assisted image processing have facilitated high-throughput quantifications of cellular structures, such as mitochondria, that are ubiquitous and morphologically diversified. A still often-overlooked computational challenge is to assign a cell identity to numerous mitochondrial instances, for which both mitochondrial and cell membrane contouring used to be required. Here, we present a vEM reconstruction procedure (called mito-SegEM) that utilizes virtual-path-based annotation to assign automatically segmented mitochondrial instances at the cellular scale, therefore bypassing the requirement of membrane contouring. The embedded toolset in webKnossos (an open-source online annotation platform) is optimized for fast annotation, visualization, and proofreading of cellular organelle networks. We demonstrate the broad applications of mito-SegEM on volumetric datasets from various tissues, including the brain, intestine, and testis, to achieve an accurate and efficient reconstruction of mitochondria in a use-dependent fashion.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":"5 2","pages":"100989"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955265/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficient cell-wide mapping of mitochondria in electron microscopic volumes using webKnossos.\",\"authors\":\"Yi Jiang, Haoyu Wang, Kevin M Boergens, Norman Rzepka, Fangfang Wang, Yunfeng Hua\",\"doi\":\"10.1016/j.crmeth.2025.100989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent technical advances in volume electron microscopy (vEM) and artificial-intelligence-assisted image processing have facilitated high-throughput quantifications of cellular structures, such as mitochondria, that are ubiquitous and morphologically diversified. A still often-overlooked computational challenge is to assign a cell identity to numerous mitochondrial instances, for which both mitochondrial and cell membrane contouring used to be required. Here, we present a vEM reconstruction procedure (called mito-SegEM) that utilizes virtual-path-based annotation to assign automatically segmented mitochondrial instances at the cellular scale, therefore bypassing the requirement of membrane contouring. The embedded toolset in webKnossos (an open-source online annotation platform) is optimized for fast annotation, visualization, and proofreading of cellular organelle networks. We demonstrate the broad applications of mito-SegEM on volumetric datasets from various tissues, including the brain, intestine, and testis, to achieve an accurate and efficient reconstruction of mitochondria in a use-dependent fashion.</p>\",\"PeriodicalId\":29773,\"journal\":{\"name\":\"Cell Reports Methods\",\"volume\":\"5 2\",\"pages\":\"100989\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955265/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crmeth.2025.100989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.100989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

体积电子显微镜(vEM)和人工智能辅助图像处理的最新技术进步促进了细胞结构(如线粒体)的高通量定量,这些结构无处不在且形态多样。一个仍然经常被忽视的计算挑战是为许多线粒体实例分配细胞身份,这需要线粒体和细胞膜轮廓。在这里,我们提出了一种vEM重建程序(称为mito-SegEM),该程序利用基于虚拟路径的注释在细胞尺度上分配自动分割的线粒体实例,从而绕过了膜轮廓的要求。webKnossos(一个开源的在线注释平台)中的嵌入式工具集针对细胞细胞器网络的快速注释、可视化和校对进行了优化。我们展示了mito-SegEM在各种组织(包括大脑、肠道和睾丸)的体积数据集上的广泛应用,以实现以使用依赖的方式准确有效地重建线粒体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient cell-wide mapping of mitochondria in electron microscopic volumes using webKnossos.

Recent technical advances in volume electron microscopy (vEM) and artificial-intelligence-assisted image processing have facilitated high-throughput quantifications of cellular structures, such as mitochondria, that are ubiquitous and morphologically diversified. A still often-overlooked computational challenge is to assign a cell identity to numerous mitochondrial instances, for which both mitochondrial and cell membrane contouring used to be required. Here, we present a vEM reconstruction procedure (called mito-SegEM) that utilizes virtual-path-based annotation to assign automatically segmented mitochondrial instances at the cellular scale, therefore bypassing the requirement of membrane contouring. The embedded toolset in webKnossos (an open-source online annotation platform) is optimized for fast annotation, visualization, and proofreading of cellular organelle networks. We demonstrate the broad applications of mito-SegEM on volumetric datasets from various tissues, including the brain, intestine, and testis, to achieve an accurate and efficient reconstruction of mitochondria in a use-dependent fashion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信