Xiangdong Song, Shiyu Tao, Fanglan An, Xiaoming Li, Jingcai Yang, Yan Cui, Xuerong Liu
{"title":"12C6重离子辐照BHK-21细胞在口蹄疫疫苗生产中的应用","authors":"Xiangdong Song, Shiyu Tao, Fanglan An, Xiaoming Li, Jingcai Yang, Yan Cui, Xuerong Liu","doi":"10.3390/vetsci12020167","DOIUrl":null,"url":null,"abstract":"<p><p>FMD poses a significant threat to animal husbandry and public health security. This study aims to investigate an innovative method for producing FMD vaccines. Wild-type BHK-21 cells were subjected to heavy ion irradiation. Following the optimization of irradiation parameters, the mutant cell line BHK-7 was selected using the limited dilution method. The concentration of FMDV 146S in the BHK-7 cells was markedly elevated, significantly enhancing FMDV replication. The suspension culture and domestication experiments demonstrated that BHK-7 exhibited characteristics like those of the control BHK-21 cells, thereby improving production efficiency and reducing costs. The metabolic analysis of the BHK-7 suspension cultures indicated that glutamine (GLN) may play a crucial role in FMDV replication, with the addition of an appropriate amount of GLN enhancing viral replication levels. Ten successive generations of BHK-7 cells showed stability in FMDV replication post-domestication, indicating good genetic stability. In this study, we obtained a mutant somatic cell line, BHK-7, which promotes FMDV replication through heavy ion irradiation technology. Through suspension culture domestication and metabolic analysis, this study provides a novel approach and concept for FMD vaccine production, as well as a reference for the development of other vaccine cell lines.</p>","PeriodicalId":23694,"journal":{"name":"Veterinary Sciences","volume":"12 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11860822/pdf/","citationCount":"0","resultStr":"{\"title\":\"Application of <sup>12</sup>C<sup>6</sup> Heavy Ion-Irradiated BHK-21 Cells in Production of Foot-and-Mouth Disease Vaccine.\",\"authors\":\"Xiangdong Song, Shiyu Tao, Fanglan An, Xiaoming Li, Jingcai Yang, Yan Cui, Xuerong Liu\",\"doi\":\"10.3390/vetsci12020167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>FMD poses a significant threat to animal husbandry and public health security. This study aims to investigate an innovative method for producing FMD vaccines. Wild-type BHK-21 cells were subjected to heavy ion irradiation. Following the optimization of irradiation parameters, the mutant cell line BHK-7 was selected using the limited dilution method. The concentration of FMDV 146S in the BHK-7 cells was markedly elevated, significantly enhancing FMDV replication. The suspension culture and domestication experiments demonstrated that BHK-7 exhibited characteristics like those of the control BHK-21 cells, thereby improving production efficiency and reducing costs. The metabolic analysis of the BHK-7 suspension cultures indicated that glutamine (GLN) may play a crucial role in FMDV replication, with the addition of an appropriate amount of GLN enhancing viral replication levels. Ten successive generations of BHK-7 cells showed stability in FMDV replication post-domestication, indicating good genetic stability. In this study, we obtained a mutant somatic cell line, BHK-7, which promotes FMDV replication through heavy ion irradiation technology. Through suspension culture domestication and metabolic analysis, this study provides a novel approach and concept for FMD vaccine production, as well as a reference for the development of other vaccine cell lines.</p>\",\"PeriodicalId\":23694,\"journal\":{\"name\":\"Veterinary Sciences\",\"volume\":\"12 2\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11860822/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary Sciences\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/vetsci12020167\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Sciences","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/vetsci12020167","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Application of 12C6 Heavy Ion-Irradiated BHK-21 Cells in Production of Foot-and-Mouth Disease Vaccine.
FMD poses a significant threat to animal husbandry and public health security. This study aims to investigate an innovative method for producing FMD vaccines. Wild-type BHK-21 cells were subjected to heavy ion irradiation. Following the optimization of irradiation parameters, the mutant cell line BHK-7 was selected using the limited dilution method. The concentration of FMDV 146S in the BHK-7 cells was markedly elevated, significantly enhancing FMDV replication. The suspension culture and domestication experiments demonstrated that BHK-7 exhibited characteristics like those of the control BHK-21 cells, thereby improving production efficiency and reducing costs. The metabolic analysis of the BHK-7 suspension cultures indicated that glutamine (GLN) may play a crucial role in FMDV replication, with the addition of an appropriate amount of GLN enhancing viral replication levels. Ten successive generations of BHK-7 cells showed stability in FMDV replication post-domestication, indicating good genetic stability. In this study, we obtained a mutant somatic cell line, BHK-7, which promotes FMDV replication through heavy ion irradiation technology. Through suspension culture domestication and metabolic analysis, this study provides a novel approach and concept for FMD vaccine production, as well as a reference for the development of other vaccine cell lines.
期刊介绍:
Veterinary Sciences is an international and interdisciplinary scholarly open access journal. It publishes original that are relevant to any field of veterinary sciences, including prevention, diagnosis and treatment of disease, disorder and injury in animals. This journal covers almost all topics related to animal health and veterinary medicine. Research fields of interest include but are not limited to: anaesthesiology anatomy bacteriology biochemistry cardiology dentistry dermatology embryology endocrinology epidemiology genetics histology immunology microbiology molecular biology mycology neurobiology oncology ophthalmology parasitology pathology pharmacology physiology radiology surgery theriogenology toxicology virology.