黄曲霉毒素b1通过内源性内质网应激诱导驴肾细胞凋亡。

IF 2 2区 农林科学 Q2 VETERINARY SCIENCES
Yanfei Ji, Yu Zhang, Wenxuan Si, Jing Guo, Guiqin Liu, Changfa Wang, Muhammad Zahoor Khan, Xia Zhao, Wenqiang Liu
{"title":"黄曲霉毒素b1通过内源性内质网应激诱导驴肾细胞凋亡。","authors":"Yanfei Ji, Yu Zhang, Wenxuan Si, Jing Guo, Guiqin Liu, Changfa Wang, Muhammad Zahoor Khan, Xia Zhao, Wenqiang Liu","doi":"10.3390/vetsci12020130","DOIUrl":null,"url":null,"abstract":"<p><p>Aflatoxin B1 (AFB1) is a prevalent environmental and forage contaminant that poses significant health risks to both humans and livestock due to its toxic effects on various organs and systems. Among its toxicological effects, nephrotoxicity is a hallmark of AFB1 exposure. However, the precise mechanisms underlying AFB1-induced kidney damage in donkeys remain poorly understood. To investigate this, we established a donkey model exposed to AFB1 by administering a diet supplemented with 1 mg AFB1/kg for 30 days. Kidney apoptosis was assessed using TUNEL staining, while gene expression and protein levels of Endonuclease G (EndoG), as well as genes related to endoplasmic reticulum (ER) stress and apoptosis, were quantified by RT-qPCR and Western blotting. Our findings indicate that AFB1 exposure resulted in significant kidney injury, apoptosis, and oxidative stress. Notably, AFB1 exposure upregulated the expression of EndoG and promoted its translocation to the ER, which subsequently induced ER stress and activated the mitochondrial apoptotic pathway. These results suggest that AFB1-induced kidney damage in donkeys is mediated through the oxidative stress and mitochondrial apoptosis pathways, primarily involving the EndoG-IRE1/ATF6-CHOP signaling axis.</p>","PeriodicalId":23694,"journal":{"name":"Veterinary Sciences","volume":"12 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11860441/pdf/","citationCount":"0","resultStr":"{\"title\":\"Aflatoxin B1-Induced Apoptosis in Donkey Kidney via EndoG-Mediated Endoplasmic Reticulum Stress.\",\"authors\":\"Yanfei Ji, Yu Zhang, Wenxuan Si, Jing Guo, Guiqin Liu, Changfa Wang, Muhammad Zahoor Khan, Xia Zhao, Wenqiang Liu\",\"doi\":\"10.3390/vetsci12020130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aflatoxin B1 (AFB1) is a prevalent environmental and forage contaminant that poses significant health risks to both humans and livestock due to its toxic effects on various organs and systems. Among its toxicological effects, nephrotoxicity is a hallmark of AFB1 exposure. However, the precise mechanisms underlying AFB1-induced kidney damage in donkeys remain poorly understood. To investigate this, we established a donkey model exposed to AFB1 by administering a diet supplemented with 1 mg AFB1/kg for 30 days. Kidney apoptosis was assessed using TUNEL staining, while gene expression and protein levels of Endonuclease G (EndoG), as well as genes related to endoplasmic reticulum (ER) stress and apoptosis, were quantified by RT-qPCR and Western blotting. Our findings indicate that AFB1 exposure resulted in significant kidney injury, apoptosis, and oxidative stress. Notably, AFB1 exposure upregulated the expression of EndoG and promoted its translocation to the ER, which subsequently induced ER stress and activated the mitochondrial apoptotic pathway. These results suggest that AFB1-induced kidney damage in donkeys is mediated through the oxidative stress and mitochondrial apoptosis pathways, primarily involving the EndoG-IRE1/ATF6-CHOP signaling axis.</p>\",\"PeriodicalId\":23694,\"journal\":{\"name\":\"Veterinary Sciences\",\"volume\":\"12 2\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11860441/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary Sciences\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/vetsci12020130\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Sciences","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/vetsci12020130","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

黄曲霉毒素B1 (AFB1)是一种普遍存在的环境和饲料污染物,由于其对各种器官和系统的毒性作用,对人类和牲畜构成重大的健康风险。在其毒理学效应中,肾毒性是AFB1暴露的一个标志。然而,afb1诱导的驴肾损伤的确切机制尚不清楚。为了研究这一点,我们建立了AFB1暴露的驴模型,在饲料中添加1 mg /kg AFB1,持续30天。TUNEL染色检测肾细胞凋亡,RT-qPCR和Western blotting检测内切酶G (EndoG)基因表达和蛋白水平以及内质网(ER)应激和凋亡相关基因。我们的研究结果表明,AFB1暴露会导致显著的肾损伤、细胞凋亡和氧化应激。值得注意的是,AFB1暴露上调EndoG的表达并促进其向内质网转运,从而诱导内质网应激并激活线粒体凋亡途径。这些结果表明,afb1诱导的驴肾损伤是通过氧化应激和线粒体凋亡途径介导的,主要涉及EndoG-IRE1/ATF6-CHOP信号轴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aflatoxin B1-Induced Apoptosis in Donkey Kidney via EndoG-Mediated Endoplasmic Reticulum Stress.

Aflatoxin B1 (AFB1) is a prevalent environmental and forage contaminant that poses significant health risks to both humans and livestock due to its toxic effects on various organs and systems. Among its toxicological effects, nephrotoxicity is a hallmark of AFB1 exposure. However, the precise mechanisms underlying AFB1-induced kidney damage in donkeys remain poorly understood. To investigate this, we established a donkey model exposed to AFB1 by administering a diet supplemented with 1 mg AFB1/kg for 30 days. Kidney apoptosis was assessed using TUNEL staining, while gene expression and protein levels of Endonuclease G (EndoG), as well as genes related to endoplasmic reticulum (ER) stress and apoptosis, were quantified by RT-qPCR and Western blotting. Our findings indicate that AFB1 exposure resulted in significant kidney injury, apoptosis, and oxidative stress. Notably, AFB1 exposure upregulated the expression of EndoG and promoted its translocation to the ER, which subsequently induced ER stress and activated the mitochondrial apoptotic pathway. These results suggest that AFB1-induced kidney damage in donkeys is mediated through the oxidative stress and mitochondrial apoptosis pathways, primarily involving the EndoG-IRE1/ATF6-CHOP signaling axis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Veterinary Sciences
Veterinary Sciences VETERINARY SCIENCES-
CiteScore
2.90
自引率
8.30%
发文量
612
审稿时长
6 weeks
期刊介绍: Veterinary Sciences is an international and interdisciplinary scholarly open access journal. It publishes original that are relevant to any field of veterinary sciences, including prevention, diagnosis and treatment of disease, disorder and injury in animals. This journal covers almost all topics related to animal health and veterinary medicine. Research fields of interest include but are not limited to: anaesthesiology anatomy bacteriology biochemistry cardiology dentistry dermatology embryology endocrinology epidemiology genetics histology immunology microbiology molecular biology mycology neurobiology oncology ophthalmology parasitology pathology pharmacology physiology radiology surgery theriogenology toxicology virology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信