Su Myat Noe, Thi Thi Zin, Ikuo Kobayashi, Pyke Tin
{"title":"基于YOLOv8嵌入式多摄像头系统的复杂开放牧场环境下黑牛跟踪优化","authors":"Su Myat Noe, Thi Thi Zin, Ikuo Kobayashi, Pyke Tin","doi":"10.1038/s41598-025-91553-4","DOIUrl":null,"url":null,"abstract":"<p><p>Monitoring the daily activity levels of black cattle is a crucial aspect of their well-being. The rapid advancements in artificial intelligence have transformed computer vision applications, including object detection, segmentation, and tracking. This has led to more effective and precise monitoring techniques for livestock. In modern cattle farms, video monitoring is essential for analyzing behavior, evaluating health, and predicting estrus events in precision farming. This paper introduces the novel Customized Multi-Camera Multi-Cattle Tracking (MCMCT) system. This unique approach uses four cameras to overcome the challenges of detecting and tracking black cattle in complex open ranch environments. The MCMCT system enhances a tracking-by-detection model with the YOLO v8 segmentation model as the detection backbone network to develop a precision black cattle monitoring system. Single-camera setups in real-world datasets of our open ranches, covering 23.3 m x 20 m with 55 cattle, have limitations in capturing all necessary details. Therefore, a multi-camera solution provides better coverage and more accurate behavior detection of cattle. The effectiveness of the MCMCT system is demonstrated through experimental results, with the YOLOv8-MCMCT system achieving an average Multi-Object Tracking Accuracy (MOTA) of 95.61% across 10 cases of 4 cameras at a processing speed of 30 frames per second. This high accuracy is a testament to the performance of the proposed MCMCT system. Additionally, integrating the Segment Anything Model (SAM) with YOLOv8 enhances the system's capability by automating cattle mask region extraction, reducing the need for manual labeling. Comparative analysis with state-of-the-art deep learning-based tracking methods, including Bot-sort, Byte-track, and OC-sort, further highlights the MCMCT's performance in multi-cattle tracking within complex natural scenes. The advanced algorithms and capabilities of the MCMCT system make it a valuable tool for non-contact automatic livestock monitoring in precision cattle farming. Its adaptability ensures effective performance across varied ranch environments without extensive retraining. This research significantly contributes to livestock monitoring, offering a robust solution for tracking black cattle and enhancing overall agricultural efficiency and management.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"6820"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861714/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimizing black cattle tracking in complex open ranch environments using YOLOv8 embedded multi-camera system.\",\"authors\":\"Su Myat Noe, Thi Thi Zin, Ikuo Kobayashi, Pyke Tin\",\"doi\":\"10.1038/s41598-025-91553-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Monitoring the daily activity levels of black cattle is a crucial aspect of their well-being. The rapid advancements in artificial intelligence have transformed computer vision applications, including object detection, segmentation, and tracking. This has led to more effective and precise monitoring techniques for livestock. In modern cattle farms, video monitoring is essential for analyzing behavior, evaluating health, and predicting estrus events in precision farming. This paper introduces the novel Customized Multi-Camera Multi-Cattle Tracking (MCMCT) system. This unique approach uses four cameras to overcome the challenges of detecting and tracking black cattle in complex open ranch environments. The MCMCT system enhances a tracking-by-detection model with the YOLO v8 segmentation model as the detection backbone network to develop a precision black cattle monitoring system. Single-camera setups in real-world datasets of our open ranches, covering 23.3 m x 20 m with 55 cattle, have limitations in capturing all necessary details. Therefore, a multi-camera solution provides better coverage and more accurate behavior detection of cattle. The effectiveness of the MCMCT system is demonstrated through experimental results, with the YOLOv8-MCMCT system achieving an average Multi-Object Tracking Accuracy (MOTA) of 95.61% across 10 cases of 4 cameras at a processing speed of 30 frames per second. This high accuracy is a testament to the performance of the proposed MCMCT system. Additionally, integrating the Segment Anything Model (SAM) with YOLOv8 enhances the system's capability by automating cattle mask region extraction, reducing the need for manual labeling. Comparative analysis with state-of-the-art deep learning-based tracking methods, including Bot-sort, Byte-track, and OC-sort, further highlights the MCMCT's performance in multi-cattle tracking within complex natural scenes. The advanced algorithms and capabilities of the MCMCT system make it a valuable tool for non-contact automatic livestock monitoring in precision cattle farming. Its adaptability ensures effective performance across varied ranch environments without extensive retraining. This research significantly contributes to livestock monitoring, offering a robust solution for tracking black cattle and enhancing overall agricultural efficiency and management.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"6820\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861714/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-91553-4\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-91553-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Optimizing black cattle tracking in complex open ranch environments using YOLOv8 embedded multi-camera system.
Monitoring the daily activity levels of black cattle is a crucial aspect of their well-being. The rapid advancements in artificial intelligence have transformed computer vision applications, including object detection, segmentation, and tracking. This has led to more effective and precise monitoring techniques for livestock. In modern cattle farms, video monitoring is essential for analyzing behavior, evaluating health, and predicting estrus events in precision farming. This paper introduces the novel Customized Multi-Camera Multi-Cattle Tracking (MCMCT) system. This unique approach uses four cameras to overcome the challenges of detecting and tracking black cattle in complex open ranch environments. The MCMCT system enhances a tracking-by-detection model with the YOLO v8 segmentation model as the detection backbone network to develop a precision black cattle monitoring system. Single-camera setups in real-world datasets of our open ranches, covering 23.3 m x 20 m with 55 cattle, have limitations in capturing all necessary details. Therefore, a multi-camera solution provides better coverage and more accurate behavior detection of cattle. The effectiveness of the MCMCT system is demonstrated through experimental results, with the YOLOv8-MCMCT system achieving an average Multi-Object Tracking Accuracy (MOTA) of 95.61% across 10 cases of 4 cameras at a processing speed of 30 frames per second. This high accuracy is a testament to the performance of the proposed MCMCT system. Additionally, integrating the Segment Anything Model (SAM) with YOLOv8 enhances the system's capability by automating cattle mask region extraction, reducing the need for manual labeling. Comparative analysis with state-of-the-art deep learning-based tracking methods, including Bot-sort, Byte-track, and OC-sort, further highlights the MCMCT's performance in multi-cattle tracking within complex natural scenes. The advanced algorithms and capabilities of the MCMCT system make it a valuable tool for non-contact automatic livestock monitoring in precision cattle farming. Its adaptability ensures effective performance across varied ranch environments without extensive retraining. This research significantly contributes to livestock monitoring, offering a robust solution for tracking black cattle and enhancing overall agricultural efficiency and management.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.