基于元学习的 PMSM-ITSF 多任务因果知识故障诊断方法

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-02-19 DOI:10.3390/s25041271
Ping Lan, Liguo Yao, Yao Lu, Taihua Zhang
{"title":"基于元学习的 PMSM-ITSF 多任务因果知识故障诊断方法","authors":"Ping Lan, Liguo Yao, Yao Lu, Taihua Zhang","doi":"10.3390/s25041271","DOIUrl":null,"url":null,"abstract":"<p><p>In the process of diagnosing the inter-turn short circuit fault of the joint permanent magnet synchronous motor of an industrial robot, due to the small and sparse fault sample data, it is easy to misdiagnose, and it is difficult to quickly and accurately evaluate the fault degree, lock the fault location, and track the fault causes. A multi-task causal knowledge fault diagnosis method for inter-turn short circuits of permanent magnet synchronous motors based on meta-learning is proposed. Firstly, the variation of parameters under the motor's inter-turn short circuit fault is thoroughly investigated, and the fault characteristic quantity is selected. Comprehensive simulations are conducted using Simulink, Simplorer, and Maxwell to generate data under different inter-turn short circuit fault states; meanwhile, the sample data are accurately labeled. Secondly, the sample data are introduced into the learning network for training, and the multi-task synchronous diagnosis of the fault degree and position of the short circuit between turns is realized. Finally, the Neo4j database based on causality knowledge of motor inter-turn short circuit fault is constructed. Experiments show that this method can diagnose the fault location, fault degree, and fault cause of the motor with different voltage unbalanced degrees. The diagnosis accuracy of fault degree is 99.75 ± 0.25%, and the diagnosis accuracy of fault location and fault degree is 99.45 ± 0.21%.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-Task Causal Knowledge Fault Diagnosis Method for PMSM-ITSF Based on Meta-Learning.\",\"authors\":\"Ping Lan, Liguo Yao, Yao Lu, Taihua Zhang\",\"doi\":\"10.3390/s25041271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the process of diagnosing the inter-turn short circuit fault of the joint permanent magnet synchronous motor of an industrial robot, due to the small and sparse fault sample data, it is easy to misdiagnose, and it is difficult to quickly and accurately evaluate the fault degree, lock the fault location, and track the fault causes. A multi-task causal knowledge fault diagnosis method for inter-turn short circuits of permanent magnet synchronous motors based on meta-learning is proposed. Firstly, the variation of parameters under the motor's inter-turn short circuit fault is thoroughly investigated, and the fault characteristic quantity is selected. Comprehensive simulations are conducted using Simulink, Simplorer, and Maxwell to generate data under different inter-turn short circuit fault states; meanwhile, the sample data are accurately labeled. Secondly, the sample data are introduced into the learning network for training, and the multi-task synchronous diagnosis of the fault degree and position of the short circuit between turns is realized. Finally, the Neo4j database based on causality knowledge of motor inter-turn short circuit fault is constructed. Experiments show that this method can diagnose the fault location, fault degree, and fault cause of the motor with different voltage unbalanced degrees. The diagnosis accuracy of fault degree is 99.75 ± 0.25%, and the diagnosis accuracy of fault location and fault degree is 99.45 ± 0.21%.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 4\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25041271\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25041271","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

在工业机器人关节永磁同步电机转间短路故障诊断过程中,由于故障样本数据少且稀疏,容易造成误诊,难以快速准确地评估故障程度、锁定故障位置、跟踪故障原因。本文提出了一种基于元学习的永磁同步电机匝间短路多任务因果知识故障诊断方法。首先,对电机匝间短路故障下的参数变化进行了深入研究,并选取了故障特征量。利用 Simulink、Simplorer 和 Maxwell 进行综合仿真,生成不同匝间短路故障状态下的数据,同时对样本数据进行精确标注。其次,将样本数据引入学习网络进行训练,实现匝间短路故障程度和位置的多任务同步诊断。最后,构建基于电机匝间短路故障因果关系知识的 Neo4j 数据库。实验表明,该方法可以诊断出不同电压不平衡度电机的故障位置、故障程度和故障原因。故障程度的诊断准确率为 99.75 ± 0.25%,故障位置和故障程度的诊断准确率为 99.45 ± 0.21%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-Task Causal Knowledge Fault Diagnosis Method for PMSM-ITSF Based on Meta-Learning.

In the process of diagnosing the inter-turn short circuit fault of the joint permanent magnet synchronous motor of an industrial robot, due to the small and sparse fault sample data, it is easy to misdiagnose, and it is difficult to quickly and accurately evaluate the fault degree, lock the fault location, and track the fault causes. A multi-task causal knowledge fault diagnosis method for inter-turn short circuits of permanent magnet synchronous motors based on meta-learning is proposed. Firstly, the variation of parameters under the motor's inter-turn short circuit fault is thoroughly investigated, and the fault characteristic quantity is selected. Comprehensive simulations are conducted using Simulink, Simplorer, and Maxwell to generate data under different inter-turn short circuit fault states; meanwhile, the sample data are accurately labeled. Secondly, the sample data are introduced into the learning network for training, and the multi-task synchronous diagnosis of the fault degree and position of the short circuit between turns is realized. Finally, the Neo4j database based on causality knowledge of motor inter-turn short circuit fault is constructed. Experiments show that this method can diagnose the fault location, fault degree, and fault cause of the motor with different voltage unbalanced degrees. The diagnosis accuracy of fault degree is 99.75 ± 0.25%, and the diagnosis accuracy of fault location and fault degree is 99.45 ± 0.21%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信