E-2-(Trimethylsilyl)-1-Nitroethene 与 Arylonitrile N-Oxides (3+2) Cycloaddition 反应的区域选择性和分子机理之谜:分子电子密度理论(MEDT)量子化学研究。

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Mikołaj Sadowski, Ewa Dresler, Radomir Jasiński
{"title":"E-2-(Trimethylsilyl)-1-Nitroethene 与 Arylonitrile N-Oxides (3+2) Cycloaddition 反应的区域选择性和分子机理之谜:分子电子密度理论(MEDT)量子化学研究。","authors":"Mikołaj Sadowski, Ewa Dresler, Radomir Jasiński","doi":"10.3390/molecules30040974","DOIUrl":null,"url":null,"abstract":"<p><p>The regioselectivity and molecular mechanism of the (3+2) cycloaddition reaction between E-2-(trimethylsilyl)-1-nitroethene and arylonitrile <i>N</i>-oxides were explored on the basis of the <i>ω</i>B97XD/6-311+G(d) (PCM) quantumchemical calculations. It was found that the earlier postulate regarding the regioselectivity of the cycloaddition stage should be undermined. Within our research, several aspects of the title reaction were also examined: interactions between reagents, electronic structures of alkenes and nitrile oxides, the nature of transition states, the influence of the polarity solvent on the reaction selectivity and mechanism, substituent effects, etc. The obtained results offer a general conclusion for all of the important aspects of some groups of cycloaddition processes.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 4","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Puzzle of the Regioselectivity and Molecular Mechanism of the (3+2) Cycloaddition Reaction Between E-2-(Trimethylsilyl)-1-Nitroethene and Arylonitrile <i>N</i>-Oxides: Molecular Electron Density Theory (MEDT) Quantumchemical Study.\",\"authors\":\"Mikołaj Sadowski, Ewa Dresler, Radomir Jasiński\",\"doi\":\"10.3390/molecules30040974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The regioselectivity and molecular mechanism of the (3+2) cycloaddition reaction between E-2-(trimethylsilyl)-1-nitroethene and arylonitrile <i>N</i>-oxides were explored on the basis of the <i>ω</i>B97XD/6-311+G(d) (PCM) quantumchemical calculations. It was found that the earlier postulate regarding the regioselectivity of the cycloaddition stage should be undermined. Within our research, several aspects of the title reaction were also examined: interactions between reagents, electronic structures of alkenes and nitrile oxides, the nature of transition states, the influence of the polarity solvent on the reaction selectivity and mechanism, substituent effects, etc. The obtained results offer a general conclusion for all of the important aspects of some groups of cycloaddition processes.</p>\",\"PeriodicalId\":19041,\"journal\":{\"name\":\"Molecules\",\"volume\":\"30 4\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/molecules30040974\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30040974","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Puzzle of the Regioselectivity and Molecular Mechanism of the (3+2) Cycloaddition Reaction Between E-2-(Trimethylsilyl)-1-Nitroethene and Arylonitrile N-Oxides: Molecular Electron Density Theory (MEDT) Quantumchemical Study.

The regioselectivity and molecular mechanism of the (3+2) cycloaddition reaction between E-2-(trimethylsilyl)-1-nitroethene and arylonitrile N-oxides were explored on the basis of the ωB97XD/6-311+G(d) (PCM) quantumchemical calculations. It was found that the earlier postulate regarding the regioselectivity of the cycloaddition stage should be undermined. Within our research, several aspects of the title reaction were also examined: interactions between reagents, electronic structures of alkenes and nitrile oxides, the nature of transition states, the influence of the polarity solvent on the reaction selectivity and mechanism, substituent effects, etc. The obtained results offer a general conclusion for all of the important aspects of some groups of cycloaddition processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信