{"title":"用于可持续电子产品的液态金属-聚合物水凝胶复合材料:综述。","authors":"Abdollah Hajalilou","doi":"10.3390/molecules30040905","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogels, renowned for their hydrophilic and viscoelastic properties, have emerged as key materials for flexible electronics, including electronic skins, wearable devices, and soft sensors. However, the application of pure double network hydrogel-based composites is limited by their poor chemical stability, low mechanical stretchability, and low sensitivity. Recent research has focused on overcoming these limitations by incorporating conductive fillers, such as liquid metals (LMs), into hydrogel matrices or creating continuous conductive paths through LMs within the polymer matrix. LMs, including eutectic gallium and indium (EGaIn) alloys, offer exceptional electromechanical, electrochemical, thermal conductivity, and self-repairing properties, making them ideal candidates for diverse soft electronic applications. The integration of LMs into hydrogels improves conductivity and mechanical performance while addressing the challenges posed by rigid fillers, such as mismatched compliance with the hydrogel matrix. This review explores the incorporation of LMs into hydrogel composites, the challenges faced in achieving optimal dispersion, and the unique functionalities introduced by these composites. We also discuss recent advances in the use of LM droplets for polymerization processes and their applications in various fields, including tissue engineering, wearable devices, biomedical applications, electromagnetic shielding, energy harvesting, and storage. Additionally, 3D-printable hydrogels are highlighted. Despite the promise of LM-based hydrogels, challenges such as macrophase separation, weak interfacial interactions between LMs and polymer networks, and the difficulty of printing LM inks onto hydrogel substrates limit their broader application. However, this review proposes solutions to these challenges.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 4","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liquid Metal-Polymer Hydrogel Composites for Sustainable Electronics: A Review.\",\"authors\":\"Abdollah Hajalilou\",\"doi\":\"10.3390/molecules30040905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hydrogels, renowned for their hydrophilic and viscoelastic properties, have emerged as key materials for flexible electronics, including electronic skins, wearable devices, and soft sensors. However, the application of pure double network hydrogel-based composites is limited by their poor chemical stability, low mechanical stretchability, and low sensitivity. Recent research has focused on overcoming these limitations by incorporating conductive fillers, such as liquid metals (LMs), into hydrogel matrices or creating continuous conductive paths through LMs within the polymer matrix. LMs, including eutectic gallium and indium (EGaIn) alloys, offer exceptional electromechanical, electrochemical, thermal conductivity, and self-repairing properties, making them ideal candidates for diverse soft electronic applications. The integration of LMs into hydrogels improves conductivity and mechanical performance while addressing the challenges posed by rigid fillers, such as mismatched compliance with the hydrogel matrix. This review explores the incorporation of LMs into hydrogel composites, the challenges faced in achieving optimal dispersion, and the unique functionalities introduced by these composites. We also discuss recent advances in the use of LM droplets for polymerization processes and their applications in various fields, including tissue engineering, wearable devices, biomedical applications, electromagnetic shielding, energy harvesting, and storage. Additionally, 3D-printable hydrogels are highlighted. Despite the promise of LM-based hydrogels, challenges such as macrophase separation, weak interfacial interactions between LMs and polymer networks, and the difficulty of printing LM inks onto hydrogel substrates limit their broader application. However, this review proposes solutions to these challenges.</p>\",\"PeriodicalId\":19041,\"journal\":{\"name\":\"Molecules\",\"volume\":\"30 4\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/molecules30040905\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30040905","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Liquid Metal-Polymer Hydrogel Composites for Sustainable Electronics: A Review.
Hydrogels, renowned for their hydrophilic and viscoelastic properties, have emerged as key materials for flexible electronics, including electronic skins, wearable devices, and soft sensors. However, the application of pure double network hydrogel-based composites is limited by their poor chemical stability, low mechanical stretchability, and low sensitivity. Recent research has focused on overcoming these limitations by incorporating conductive fillers, such as liquid metals (LMs), into hydrogel matrices or creating continuous conductive paths through LMs within the polymer matrix. LMs, including eutectic gallium and indium (EGaIn) alloys, offer exceptional electromechanical, electrochemical, thermal conductivity, and self-repairing properties, making them ideal candidates for diverse soft electronic applications. The integration of LMs into hydrogels improves conductivity and mechanical performance while addressing the challenges posed by rigid fillers, such as mismatched compliance with the hydrogel matrix. This review explores the incorporation of LMs into hydrogel composites, the challenges faced in achieving optimal dispersion, and the unique functionalities introduced by these composites. We also discuss recent advances in the use of LM droplets for polymerization processes and their applications in various fields, including tissue engineering, wearable devices, biomedical applications, electromagnetic shielding, energy harvesting, and storage. Additionally, 3D-printable hydrogels are highlighted. Despite the promise of LM-based hydrogels, challenges such as macrophase separation, weak interfacial interactions between LMs and polymer networks, and the difficulty of printing LM inks onto hydrogel substrates limit their broader application. However, this review proposes solutions to these challenges.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.