脂肪分解酵母对液体和固体脂质废物的生物转化:细胞外脂肪酶生物合成和微生物脂质生产研究。

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Katarzyna Wierzchowska, Karolina Szulc, Bartłomiej Zieniuk, Agata Fabiszewska
{"title":"脂肪分解酵母对液体和固体脂质废物的生物转化:细胞外脂肪酶生物合成和微生物脂质生产研究。","authors":"Katarzyna Wierzchowska, Karolina Szulc, Bartłomiej Zieniuk, Agata Fabiszewska","doi":"10.3390/molecules30040959","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the capabilities of <i>Yarrowia lipolytica</i> strains to grow in media with different hydrophobic wastes from the meat industry. The yeast growth, cellular lipid accumulation, production of lipases, and degree of utilization of liquid and solid lipid wastes were studied in shaken cultures in media with organic and inorganic nitrogen sources. The effects of the type of waste, initial concentration of carbon source, <i>Yarrowia</i> strain, and inoculum size were investigated in two experimental sets using the Latin Square 5 × 5 design method. Post-frying rapeseed oil from chicken frying was selected as the carbon source to promote biomass growth. In contrast, the solid lipid fraction from meat broths promoted efficient lipid accumulation and yeast lipolytic activity. An initial concentration of the carbon source at 8% <i>m</i>/<i>v</i> stimulated efficient lipid biosynthesis and lipase production, while 2.5% <i>v</i>/<i>v</i> inoculum provided optimal conditions for the growth and utilization of hydrophobic substrates. No significant differences were observed in the particle dispersion of the liquid and solid wastes in the culture media (<i>span</i> = 2.51-3.23). The maximum emulsification index (62%) was observed in the culture of the <i>Y. lipolytica</i> KKP 323 strain in the medium with post-frying rapeseed oil from chicken frying, which was correlated with biosurfactant synthesis. It was concluded that the type of waste, its structure, and its composition affected various physiological yeast responses.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 4","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioconversion of Liquid and Solid Lipid Waste by <i>Yarrowia lipolytica</i> Yeast: A Study of Extracellular Lipase Biosynthesis and Microbial Lipid Production.\",\"authors\":\"Katarzyna Wierzchowska, Karolina Szulc, Bartłomiej Zieniuk, Agata Fabiszewska\",\"doi\":\"10.3390/molecules30040959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigated the capabilities of <i>Yarrowia lipolytica</i> strains to grow in media with different hydrophobic wastes from the meat industry. The yeast growth, cellular lipid accumulation, production of lipases, and degree of utilization of liquid and solid lipid wastes were studied in shaken cultures in media with organic and inorganic nitrogen sources. The effects of the type of waste, initial concentration of carbon source, <i>Yarrowia</i> strain, and inoculum size were investigated in two experimental sets using the Latin Square 5 × 5 design method. Post-frying rapeseed oil from chicken frying was selected as the carbon source to promote biomass growth. In contrast, the solid lipid fraction from meat broths promoted efficient lipid accumulation and yeast lipolytic activity. An initial concentration of the carbon source at 8% <i>m</i>/<i>v</i> stimulated efficient lipid biosynthesis and lipase production, while 2.5% <i>v</i>/<i>v</i> inoculum provided optimal conditions for the growth and utilization of hydrophobic substrates. No significant differences were observed in the particle dispersion of the liquid and solid wastes in the culture media (<i>span</i> = 2.51-3.23). The maximum emulsification index (62%) was observed in the culture of the <i>Y. lipolytica</i> KKP 323 strain in the medium with post-frying rapeseed oil from chicken frying, which was correlated with biosurfactant synthesis. It was concluded that the type of waste, its structure, and its composition affected various physiological yeast responses.</p>\",\"PeriodicalId\":19041,\"journal\":{\"name\":\"Molecules\",\"volume\":\"30 4\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/molecules30040959\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30040959","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bioconversion of Liquid and Solid Lipid Waste by Yarrowia lipolytica Yeast: A Study of Extracellular Lipase Biosynthesis and Microbial Lipid Production.

This study investigated the capabilities of Yarrowia lipolytica strains to grow in media with different hydrophobic wastes from the meat industry. The yeast growth, cellular lipid accumulation, production of lipases, and degree of utilization of liquid and solid lipid wastes were studied in shaken cultures in media with organic and inorganic nitrogen sources. The effects of the type of waste, initial concentration of carbon source, Yarrowia strain, and inoculum size were investigated in two experimental sets using the Latin Square 5 × 5 design method. Post-frying rapeseed oil from chicken frying was selected as the carbon source to promote biomass growth. In contrast, the solid lipid fraction from meat broths promoted efficient lipid accumulation and yeast lipolytic activity. An initial concentration of the carbon source at 8% m/v stimulated efficient lipid biosynthesis and lipase production, while 2.5% v/v inoculum provided optimal conditions for the growth and utilization of hydrophobic substrates. No significant differences were observed in the particle dispersion of the liquid and solid wastes in the culture media (span = 2.51-3.23). The maximum emulsification index (62%) was observed in the culture of the Y. lipolytica KKP 323 strain in the medium with post-frying rapeseed oil from chicken frying, which was correlated with biosurfactant synthesis. It was concluded that the type of waste, its structure, and its composition affected various physiological yeast responses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信