{"title":"探索甜菜宁在 DMBA 诱导的口腔鳞状细胞癌中的抗癌潜力:一项硅学和实验研究。","authors":"Ramachandhiran Duraisamy, Vinothkumar Veerasamy, Vaitheeswari Balakrishnan, Saranya Jawaharlal, Srinivasan Subramani, Vigil Anbiah Sathiavakoo","doi":"10.1007/s00210-025-03909-2","DOIUrl":null,"url":null,"abstract":"<p><p>In addition to being able to fight cancer, betanin (BTN) has amazing natural antioxidant and peroxy-radical scavenging properties. 7,12-Dimethylbenz[a]anthracene (DMBA) can impair the activities of enzymes accountable for breaking down xenobiotics and can also cause lipid peroxidation. The study's goal was to find out if betanin could protect against these problems. We determined 100% tumor incidence, abnormal tumor volume, inclined tumor burden, and deduced body weight in DMBA-induced hamsters. We observed diminished lipid peroxidation and enzymatic and nonenzymatic antioxidant activities in DMBA-induced hamsters. The histological study showed that the hamster that receives only DMBA undergoes hyperkeratosis, epithelial hyperplasia, dysplasia, and well-differentiated oral squamous cell carcinoma (OSCC). The hamsters received three different dosages of BTN (10, 20, and 40 mg/kg b.w.) via intragastric intubation for 14 weeks, on alternate days of DMBA painting. The levels of antioxidants, xenobiotic enzymes, and lipid peroxidation (LPO) were significantly restored and inhibited tumor development in a dose-dependent manner. The molecular docking study found high levels of binding affinity in Bax (PDB ID: 2K7W), Caspase-3 (PDB ID: 4JJ8), Caspase-9 (PDB ID: 2AR9), PI3K (PDB ID: 5XGI), AKT (PDB ID: 6BUU), p53 (PDB ID: 1YCS), SMAD-2 (PDB ID: 1DEV), SMAD-4 (PDB ID: 1YGS), SMAD-7 (PDB ID: 2DJY), TGFβ-I (PDB ID: 1PY5), and TGFβ-II (PDB ID: 1M9Z). So, therefore, in vivo and in silico studies were providing prominent anticancer activity of betanin against DMBA-induced oral cancer.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring anticancer potential of betanin in DMBA-induced oral squamous cell carcinoma: an in silico and experimental study.\",\"authors\":\"Ramachandhiran Duraisamy, Vinothkumar Veerasamy, Vaitheeswari Balakrishnan, Saranya Jawaharlal, Srinivasan Subramani, Vigil Anbiah Sathiavakoo\",\"doi\":\"10.1007/s00210-025-03909-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In addition to being able to fight cancer, betanin (BTN) has amazing natural antioxidant and peroxy-radical scavenging properties. 7,12-Dimethylbenz[a]anthracene (DMBA) can impair the activities of enzymes accountable for breaking down xenobiotics and can also cause lipid peroxidation. The study's goal was to find out if betanin could protect against these problems. We determined 100% tumor incidence, abnormal tumor volume, inclined tumor burden, and deduced body weight in DMBA-induced hamsters. We observed diminished lipid peroxidation and enzymatic and nonenzymatic antioxidant activities in DMBA-induced hamsters. The histological study showed that the hamster that receives only DMBA undergoes hyperkeratosis, epithelial hyperplasia, dysplasia, and well-differentiated oral squamous cell carcinoma (OSCC). The hamsters received three different dosages of BTN (10, 20, and 40 mg/kg b.w.) via intragastric intubation for 14 weeks, on alternate days of DMBA painting. The levels of antioxidants, xenobiotic enzymes, and lipid peroxidation (LPO) were significantly restored and inhibited tumor development in a dose-dependent manner. The molecular docking study found high levels of binding affinity in Bax (PDB ID: 2K7W), Caspase-3 (PDB ID: 4JJ8), Caspase-9 (PDB ID: 2AR9), PI3K (PDB ID: 5XGI), AKT (PDB ID: 6BUU), p53 (PDB ID: 1YCS), SMAD-2 (PDB ID: 1DEV), SMAD-4 (PDB ID: 1YGS), SMAD-7 (PDB ID: 2DJY), TGFβ-I (PDB ID: 1PY5), and TGFβ-II (PDB ID: 1M9Z). So, therefore, in vivo and in silico studies were providing prominent anticancer activity of betanin against DMBA-induced oral cancer.</p>\",\"PeriodicalId\":18876,\"journal\":{\"name\":\"Naunyn-Schmiedeberg's archives of pharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naunyn-Schmiedeberg's archives of pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00210-025-03909-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-025-03909-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Exploring anticancer potential of betanin in DMBA-induced oral squamous cell carcinoma: an in silico and experimental study.
In addition to being able to fight cancer, betanin (BTN) has amazing natural antioxidant and peroxy-radical scavenging properties. 7,12-Dimethylbenz[a]anthracene (DMBA) can impair the activities of enzymes accountable for breaking down xenobiotics and can also cause lipid peroxidation. The study's goal was to find out if betanin could protect against these problems. We determined 100% tumor incidence, abnormal tumor volume, inclined tumor burden, and deduced body weight in DMBA-induced hamsters. We observed diminished lipid peroxidation and enzymatic and nonenzymatic antioxidant activities in DMBA-induced hamsters. The histological study showed that the hamster that receives only DMBA undergoes hyperkeratosis, epithelial hyperplasia, dysplasia, and well-differentiated oral squamous cell carcinoma (OSCC). The hamsters received three different dosages of BTN (10, 20, and 40 mg/kg b.w.) via intragastric intubation for 14 weeks, on alternate days of DMBA painting. The levels of antioxidants, xenobiotic enzymes, and lipid peroxidation (LPO) were significantly restored and inhibited tumor development in a dose-dependent manner. The molecular docking study found high levels of binding affinity in Bax (PDB ID: 2K7W), Caspase-3 (PDB ID: 4JJ8), Caspase-9 (PDB ID: 2AR9), PI3K (PDB ID: 5XGI), AKT (PDB ID: 6BUU), p53 (PDB ID: 1YCS), SMAD-2 (PDB ID: 1DEV), SMAD-4 (PDB ID: 1YGS), SMAD-7 (PDB ID: 2DJY), TGFβ-I (PDB ID: 1PY5), and TGFβ-II (PDB ID: 1M9Z). So, therefore, in vivo and in silico studies were providing prominent anticancer activity of betanin against DMBA-induced oral cancer.
期刊介绍:
Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.