层次化TiO2纳米管阵列通过表面纳米形貌增强间充质干细胞的粘附和再生潜能。

IF 3.7 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Journal of The Royal Society Interface Pub Date : 2025-02-01 Epub Date: 2025-02-26 DOI:10.1098/rsif.2024.0642
Nur Kubra Tasdemir, Bogac Kilicarslan, Gozde Imren, Beren Karaosmanoglu, Ekim Z Taskiran, Cem Bayram
{"title":"层次化TiO2纳米管阵列通过表面纳米形貌增强间充质干细胞的粘附和再生潜能。","authors":"Nur Kubra Tasdemir, Bogac Kilicarslan, Gozde Imren, Beren Karaosmanoglu, Ekim Z Taskiran, Cem Bayram","doi":"10.1098/rsif.2024.0642","DOIUrl":null,"url":null,"abstract":"<p><p>The concept of preconditioning mesenchymal stem cells (MSCs) under different stress conditions or with bioactive molecules is introduced to optimize their therapeutic potential. This study investigates the physicochemical effect of hierarchical TiO<sub>2</sub> nanotube arrays, a versatile and easy-to-prepare nanosurface, on MSC behaviour. By precisely controlling the nanotopography through anodization, we demonstrate the significant influence of surface properties on MSC adhesion, proliferation and differentiation. Electrostatic interactions between surface charge and proteins play a crucial role in these cellular responses. In addition, preconditioning MSCs under specific conditions enhances their therapeutic potential by optimizing paracrine signalling and homing properties. Higher surface charges and increasing spiky character of surface roughness of titania samples after anodization at 60 V significantly upregulated chemokine receptor type 4 (CXCR4) and vascular endothelial growth factor A (VEGFA), indicating the enhanced migratory and angiogenic potential of MSCs. The study reveals the mechanotransductive effects of nanotopography on MSC differentiation, suggesting that tailored surface features can direct cellular fate. These findings highlight the potential of hierarchical TiO<sub>2</sub> nanotube arrays as a promising platform for regenerative medicine, offering a novel approach to improve tissue engineering and therapeutic outcomes.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 223","pages":"20240642"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858746/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hierarchical TiO<sub>2</sub> nanotube arrays enhance mesenchymal stem cell adhesion and regenerative potential through surface nanotopography.\",\"authors\":\"Nur Kubra Tasdemir, Bogac Kilicarslan, Gozde Imren, Beren Karaosmanoglu, Ekim Z Taskiran, Cem Bayram\",\"doi\":\"10.1098/rsif.2024.0642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The concept of preconditioning mesenchymal stem cells (MSCs) under different stress conditions or with bioactive molecules is introduced to optimize their therapeutic potential. This study investigates the physicochemical effect of hierarchical TiO<sub>2</sub> nanotube arrays, a versatile and easy-to-prepare nanosurface, on MSC behaviour. By precisely controlling the nanotopography through anodization, we demonstrate the significant influence of surface properties on MSC adhesion, proliferation and differentiation. Electrostatic interactions between surface charge and proteins play a crucial role in these cellular responses. In addition, preconditioning MSCs under specific conditions enhances their therapeutic potential by optimizing paracrine signalling and homing properties. Higher surface charges and increasing spiky character of surface roughness of titania samples after anodization at 60 V significantly upregulated chemokine receptor type 4 (CXCR4) and vascular endothelial growth factor A (VEGFA), indicating the enhanced migratory and angiogenic potential of MSCs. The study reveals the mechanotransductive effects of nanotopography on MSC differentiation, suggesting that tailored surface features can direct cellular fate. These findings highlight the potential of hierarchical TiO<sub>2</sub> nanotube arrays as a promising platform for regenerative medicine, offering a novel approach to improve tissue engineering and therapeutic outcomes.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"22 223\",\"pages\":\"20240642\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858746/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2024.0642\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0642","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

介绍了在不同应激条件下或用生物活性分子预处理间充质干细胞(MSCs)的概念,以优化其治疗潜力。本研究探讨了多层TiO2纳米管阵列(一种多功能且易于制备的纳米表面)对MSC行为的物理化学影响。通过阳极氧化精确控制纳米形貌,我们证明了表面特性对MSC粘附、增殖和分化的显著影响。表面电荷和蛋白质之间的静电相互作用在这些细胞反应中起着至关重要的作用。此外,在特定条件下预处理MSCs可以通过优化旁分泌信号和归巢特性来增强其治疗潜力。60 V阳极氧化后,二氧化钛样品的表面电荷增加,表面粗糙度增加,可显著上调趋化因子受体4 (CXCR4)和血管内皮生长因子A (VEGFA),表明MSCs的迁移和血管生成潜力增强。该研究揭示了纳米形貌对间充质干细胞分化的机械转导作用,表明定制的表面特征可以指导细胞命运。这些发现突出了层次化TiO2纳米管阵列作为再生医学平台的潜力,为改善组织工程和治疗效果提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical TiO2 nanotube arrays enhance mesenchymal stem cell adhesion and regenerative potential through surface nanotopography.

The concept of preconditioning mesenchymal stem cells (MSCs) under different stress conditions or with bioactive molecules is introduced to optimize their therapeutic potential. This study investigates the physicochemical effect of hierarchical TiO2 nanotube arrays, a versatile and easy-to-prepare nanosurface, on MSC behaviour. By precisely controlling the nanotopography through anodization, we demonstrate the significant influence of surface properties on MSC adhesion, proliferation and differentiation. Electrostatic interactions between surface charge and proteins play a crucial role in these cellular responses. In addition, preconditioning MSCs under specific conditions enhances their therapeutic potential by optimizing paracrine signalling and homing properties. Higher surface charges and increasing spiky character of surface roughness of titania samples after anodization at 60 V significantly upregulated chemokine receptor type 4 (CXCR4) and vascular endothelial growth factor A (VEGFA), indicating the enhanced migratory and angiogenic potential of MSCs. The study reveals the mechanotransductive effects of nanotopography on MSC differentiation, suggesting that tailored surface features can direct cellular fate. These findings highlight the potential of hierarchical TiO2 nanotube arrays as a promising platform for regenerative medicine, offering a novel approach to improve tissue engineering and therapeutic outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信