呼吸道病毒的综合空气传播风险评估模型:短期和长期贡献。

IF 3.7 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Journal of The Royal Society Interface Pub Date : 2025-02-01 Epub Date: 2025-02-26 DOI:10.1098/rsif.2024.0740
Andre Henriques, Wei Jia, Luis Aleixo, Nicolas Mounet, Luca Fontana, Alice Simniceanu, James Devine, Philip Elson, Gabriella Azzopardi, Markus Rognlien, Marco Andreini, Nicola Tarocco, Olivia Keiser, Yuguo Li, Julian W Tang
{"title":"呼吸道病毒的综合空气传播风险评估模型:短期和长期贡献。","authors":"Andre Henriques, Wei Jia, Luis Aleixo, Nicolas Mounet, Luca Fontana, Alice Simniceanu, James Devine, Philip Elson, Gabriella Azzopardi, Markus Rognlien, Marco Andreini, Nicola Tarocco, Olivia Keiser, Yuguo Li, Julian W Tang","doi":"10.1098/rsif.2024.0740","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents an advanced airborne transmission risk assessment model that integrates both short- and long-range routes in the spread of respiratory viruses, building upon the CERN Airborne Model for Indoor Risk Assessment (CAiMIRA) and aligned with the new World Health Organization (WHO) terminology. Thanks to a two-stage exhaled jet approach, the model accurately simulates short-range exposures, thereby improving infection risk predictions across diverse indoor settings. Key findings reveal that in patient wards, the short-range viral dose is 10-fold higher than the long-range component, highlighting the critical role of close proximity interactions. Implementation of FFP2 respirators resulted in a remarkable 13-fold reduction in viral dose, underscoring the effectiveness of personal protective equipment (PPE). Additionally, the model demonstrated that an 8 h exposure in a poorly ventilated office can equate to the risk of a 15 min face-to-face, mask-less interaction, emphasizing the importance of physical distancing and source control. We also found in high-risk or low-occupancy settings, that secondary transmission is driven more by overall epidemic trends than by the presence of individual superspreaders. Monte Carlo simulations across various scenarios, including classrooms and offices, validate the model's robustness in optimizing infection prevention strategies. These findings support targeted interventions for short- and long-range exposure to reduce airborne transmission.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 223","pages":"20240740"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858786/pdf/","citationCount":"0","resultStr":"{\"title\":\"An integrated airborne transmission risk assessment model for respiratory viruses: short- and long-range contributions.\",\"authors\":\"Andre Henriques, Wei Jia, Luis Aleixo, Nicolas Mounet, Luca Fontana, Alice Simniceanu, James Devine, Philip Elson, Gabriella Azzopardi, Markus Rognlien, Marco Andreini, Nicola Tarocco, Olivia Keiser, Yuguo Li, Julian W Tang\",\"doi\":\"10.1098/rsif.2024.0740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents an advanced airborne transmission risk assessment model that integrates both short- and long-range routes in the spread of respiratory viruses, building upon the CERN Airborne Model for Indoor Risk Assessment (CAiMIRA) and aligned with the new World Health Organization (WHO) terminology. Thanks to a two-stage exhaled jet approach, the model accurately simulates short-range exposures, thereby improving infection risk predictions across diverse indoor settings. Key findings reveal that in patient wards, the short-range viral dose is 10-fold higher than the long-range component, highlighting the critical role of close proximity interactions. Implementation of FFP2 respirators resulted in a remarkable 13-fold reduction in viral dose, underscoring the effectiveness of personal protective equipment (PPE). Additionally, the model demonstrated that an 8 h exposure in a poorly ventilated office can equate to the risk of a 15 min face-to-face, mask-less interaction, emphasizing the importance of physical distancing and source control. We also found in high-risk or low-occupancy settings, that secondary transmission is driven more by overall epidemic trends than by the presence of individual superspreaders. Monte Carlo simulations across various scenarios, including classrooms and offices, validate the model's robustness in optimizing infection prevention strategies. These findings support targeted interventions for short- and long-range exposure to reduce airborne transmission.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"22 223\",\"pages\":\"20240740\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858786/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2024.0740\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0740","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种先进的空气传播风险评估模型,该模型在CERN室内风险评估空气传播模型(CAiMIRA)的基础上,与世界卫生组织(WHO)的新术语保持一致,整合了呼吸道病毒传播的短程和远程途径。由于采用了两阶段呼气喷射方法,该模型准确地模拟了近距离暴露,从而提高了不同室内环境下的感染风险预测。主要研究结果显示,在病人病房中,短程病毒剂量比远程成分高10倍,突出了近距离相互作用的关键作用。实施FFP2呼吸器导致病毒剂量显著减少13倍,强调了个人防护装备(PPE)的有效性。此外,该模型表明,在通风不良的办公室中暴露8小时的风险相当于15分钟面对面、不戴口罩的互动,强调了物理距离和源头控制的重要性。我们还发现,在高风险或低占用率环境中,二次传播更多地是由总体流行趋势驱动的,而不是单个超级传播者的存在。蒙特卡罗模拟了各种场景,包括教室和办公室,验证了模型在优化感染预防策略方面的鲁棒性。这些发现支持针对短期和长期接触采取有针对性的干预措施,以减少空气传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An integrated airborne transmission risk assessment model for respiratory viruses: short- and long-range contributions.

This study presents an advanced airborne transmission risk assessment model that integrates both short- and long-range routes in the spread of respiratory viruses, building upon the CERN Airborne Model for Indoor Risk Assessment (CAiMIRA) and aligned with the new World Health Organization (WHO) terminology. Thanks to a two-stage exhaled jet approach, the model accurately simulates short-range exposures, thereby improving infection risk predictions across diverse indoor settings. Key findings reveal that in patient wards, the short-range viral dose is 10-fold higher than the long-range component, highlighting the critical role of close proximity interactions. Implementation of FFP2 respirators resulted in a remarkable 13-fold reduction in viral dose, underscoring the effectiveness of personal protective equipment (PPE). Additionally, the model demonstrated that an 8 h exposure in a poorly ventilated office can equate to the risk of a 15 min face-to-face, mask-less interaction, emphasizing the importance of physical distancing and source control. We also found in high-risk or low-occupancy settings, that secondary transmission is driven more by overall epidemic trends than by the presence of individual superspreaders. Monte Carlo simulations across various scenarios, including classrooms and offices, validate the model's robustness in optimizing infection prevention strategies. These findings support targeted interventions for short- and long-range exposure to reduce airborne transmission.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信