ISMRM扩散研究组对临床前扩散MRI的考虑和建议:第3部分:离体成像:数据处理,与显微镜和导管造影的比较。

IF 3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Kurt G. Schilling, Amy F. D. Howard, Francesco Grussu, Andrada Ianus, Brian Hansen, Rachel L. C. Barrett, Manisha Aggarwal, Stijn Michielse, Fatima Nasrallah, Warda Syeda, Nian Wang, Jelle Veraart, Alard Roebroeck, Andrew F. Bagdasarian, Cornelius Eichner, Farshid Sepehrband, Jan Zimmermann, Lucas Soustelle, Christien Bowman, Benjamin C. Tendler, Andreea Hertanu, Ben Jeurissen, Marleen Verhoye, Lucio Frydman, Yohan van de Looij, David Hike, Jeff F. Dunn, Karla Miller, Bennett A. Landman, Noam Shemesh, Adam Anderson, Emilie McKinnon, Shawna Farquharson, Flavio Dell'Acqua, Carlo Pierpaoli, Ivana Drobnjak, Alexander Leemans, Kevin D. Harkins, Maxime Descoteaux, Duan Xu, Hao Huang, Mathieu D. Santin, Samuel C. Grant, Andre Obenaus, Gene S. Kim, Dan Wu, Denis Le Bihan, Stephen J. Blackband, Luisa Ciobanu, Els Fieremans, Ruiliang Bai, Trygve B. Leergaard, Jiangyang Zhang, Tim B. Dyrby, G. Allan Johnson, Julien Cohen-Adad, Matthew D. Budde, Ileana O. Jelescu
{"title":"ISMRM扩散研究组对临床前扩散MRI的考虑和建议:第3部分:离体成像:数据处理,与显微镜和导管造影的比较。","authors":"Kurt G. Schilling,&nbsp;Amy F. D. Howard,&nbsp;Francesco Grussu,&nbsp;Andrada Ianus,&nbsp;Brian Hansen,&nbsp;Rachel L. C. Barrett,&nbsp;Manisha Aggarwal,&nbsp;Stijn Michielse,&nbsp;Fatima Nasrallah,&nbsp;Warda Syeda,&nbsp;Nian Wang,&nbsp;Jelle Veraart,&nbsp;Alard Roebroeck,&nbsp;Andrew F. Bagdasarian,&nbsp;Cornelius Eichner,&nbsp;Farshid Sepehrband,&nbsp;Jan Zimmermann,&nbsp;Lucas Soustelle,&nbsp;Christien Bowman,&nbsp;Benjamin C. Tendler,&nbsp;Andreea Hertanu,&nbsp;Ben Jeurissen,&nbsp;Marleen Verhoye,&nbsp;Lucio Frydman,&nbsp;Yohan van de Looij,&nbsp;David Hike,&nbsp;Jeff F. Dunn,&nbsp;Karla Miller,&nbsp;Bennett A. Landman,&nbsp;Noam Shemesh,&nbsp;Adam Anderson,&nbsp;Emilie McKinnon,&nbsp;Shawna Farquharson,&nbsp;Flavio Dell'Acqua,&nbsp;Carlo Pierpaoli,&nbsp;Ivana Drobnjak,&nbsp;Alexander Leemans,&nbsp;Kevin D. Harkins,&nbsp;Maxime Descoteaux,&nbsp;Duan Xu,&nbsp;Hao Huang,&nbsp;Mathieu D. Santin,&nbsp;Samuel C. Grant,&nbsp;Andre Obenaus,&nbsp;Gene S. Kim,&nbsp;Dan Wu,&nbsp;Denis Le Bihan,&nbsp;Stephen J. Blackband,&nbsp;Luisa Ciobanu,&nbsp;Els Fieremans,&nbsp;Ruiliang Bai,&nbsp;Trygve B. Leergaard,&nbsp;Jiangyang Zhang,&nbsp;Tim B. Dyrby,&nbsp;G. Allan Johnson,&nbsp;Julien Cohen-Adad,&nbsp;Matthew D. Budde,&nbsp;Ileana O. Jelescu","doi":"10.1002/mrm.30424","DOIUrl":null,"url":null,"abstract":"<p>Preclinical diffusion MRI (dMRI) has proven value in methods development and validation, characterizing the biological basis of diffusion phenomena, and comparative anatomy. While dMRI enables in vivo non-invasive characterization of tissue, ex vivo dMRI is increasingly being used to probe tissue microstructure and brain connectivity. Ex vivo dMRI has several experimental advantages that facilitate high spatial resolution and high SNR images, cutting-edge diffusion contrasts, and direct comparison with histological data as a methodological validation. However, there are a number of considerations that must be made when performing ex vivo experiments. The steps from tissue preparation, image acquisition and processing, and interpretation of results are complex, with many decisions that not only differ dramatically from in vivo imaging of small animals, but ultimately affect what questions can be answered using the data. This work concludes a three-part series of recommendations and considerations for preclinical dMRI. Herein, we describe best practices for dMRI of ex vivo tissue, with a focus on image pre-processing, data processing, and comparisons with microscopy. In each section, we attempt to provide guidelines and recommendations but also highlight areas for which no guidelines exist (and why), and where future work should lie. We end by providing guidelines on code sharing and data sharing and point toward open-source software and databases specific to small animal and ex vivo imaging.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":"93 6","pages":"2561-2582"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrm.30424","citationCount":"0","resultStr":"{\"title\":\"Considerations and recommendations from the ISMRM Diffusion Study Group for preclinical diffusion MRI: Part 3—Ex vivo imaging: Data processing, comparisons with microscopy, and tractography\",\"authors\":\"Kurt G. Schilling,&nbsp;Amy F. D. Howard,&nbsp;Francesco Grussu,&nbsp;Andrada Ianus,&nbsp;Brian Hansen,&nbsp;Rachel L. C. Barrett,&nbsp;Manisha Aggarwal,&nbsp;Stijn Michielse,&nbsp;Fatima Nasrallah,&nbsp;Warda Syeda,&nbsp;Nian Wang,&nbsp;Jelle Veraart,&nbsp;Alard Roebroeck,&nbsp;Andrew F. Bagdasarian,&nbsp;Cornelius Eichner,&nbsp;Farshid Sepehrband,&nbsp;Jan Zimmermann,&nbsp;Lucas Soustelle,&nbsp;Christien Bowman,&nbsp;Benjamin C. Tendler,&nbsp;Andreea Hertanu,&nbsp;Ben Jeurissen,&nbsp;Marleen Verhoye,&nbsp;Lucio Frydman,&nbsp;Yohan van de Looij,&nbsp;David Hike,&nbsp;Jeff F. Dunn,&nbsp;Karla Miller,&nbsp;Bennett A. Landman,&nbsp;Noam Shemesh,&nbsp;Adam Anderson,&nbsp;Emilie McKinnon,&nbsp;Shawna Farquharson,&nbsp;Flavio Dell'Acqua,&nbsp;Carlo Pierpaoli,&nbsp;Ivana Drobnjak,&nbsp;Alexander Leemans,&nbsp;Kevin D. Harkins,&nbsp;Maxime Descoteaux,&nbsp;Duan Xu,&nbsp;Hao Huang,&nbsp;Mathieu D. Santin,&nbsp;Samuel C. Grant,&nbsp;Andre Obenaus,&nbsp;Gene S. Kim,&nbsp;Dan Wu,&nbsp;Denis Le Bihan,&nbsp;Stephen J. Blackband,&nbsp;Luisa Ciobanu,&nbsp;Els Fieremans,&nbsp;Ruiliang Bai,&nbsp;Trygve B. Leergaard,&nbsp;Jiangyang Zhang,&nbsp;Tim B. Dyrby,&nbsp;G. Allan Johnson,&nbsp;Julien Cohen-Adad,&nbsp;Matthew D. Budde,&nbsp;Ileana O. Jelescu\",\"doi\":\"10.1002/mrm.30424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Preclinical diffusion MRI (dMRI) has proven value in methods development and validation, characterizing the biological basis of diffusion phenomena, and comparative anatomy. While dMRI enables in vivo non-invasive characterization of tissue, ex vivo dMRI is increasingly being used to probe tissue microstructure and brain connectivity. Ex vivo dMRI has several experimental advantages that facilitate high spatial resolution and high SNR images, cutting-edge diffusion contrasts, and direct comparison with histological data as a methodological validation. However, there are a number of considerations that must be made when performing ex vivo experiments. The steps from tissue preparation, image acquisition and processing, and interpretation of results are complex, with many decisions that not only differ dramatically from in vivo imaging of small animals, but ultimately affect what questions can be answered using the data. This work concludes a three-part series of recommendations and considerations for preclinical dMRI. Herein, we describe best practices for dMRI of ex vivo tissue, with a focus on image pre-processing, data processing, and comparisons with microscopy. In each section, we attempt to provide guidelines and recommendations but also highlight areas for which no guidelines exist (and why), and where future work should lie. We end by providing guidelines on code sharing and data sharing and point toward open-source software and databases specific to small animal and ex vivo imaging.</p>\",\"PeriodicalId\":18065,\"journal\":{\"name\":\"Magnetic Resonance in Medicine\",\"volume\":\"93 6\",\"pages\":\"2561-2582\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrm.30424\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mrm.30424\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mrm.30424","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

临床前弥散MRI (dMRI)在方法开发和验证、表征弥散现象的生物学基础和比较解剖学方面已被证明具有价值。虽然dMRI能够在体内无创地表征组织,但离体dMRI越来越多地用于探测组织微观结构和大脑连接。离体dMRI具有几个实验优势,可促进高空间分辨率和高信噪比图像,先进的扩散对比,以及与组织学数据直接比较作为方法学验证。然而,在进行离体实验时,必须考虑一些因素。从组织准备,图像采集和处理到结果解释的步骤是复杂的,其中许多决定不仅与小动物体内成像有很大不同,而且最终影响使用数据可以回答的问题。这项工作总结了临床前dMRI的三部分建议和考虑。在这里,我们描述了离体组织dMRI的最佳实践,重点是图像预处理,数据处理以及与显微镜的比较。在每个部分中,我们试图提供指导方针和建议,但也强调没有指导方针存在的领域(以及为什么),以及未来的工作应该在哪里。最后,我们提供了代码共享和数据共享的指导方针,并指向开源软件和数据库,具体到小动物和离体成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Considerations and recommendations from the ISMRM Diffusion Study Group for preclinical diffusion MRI: Part 3—Ex vivo imaging: Data processing, comparisons with microscopy, and tractography

Considerations and recommendations from the ISMRM Diffusion Study Group for preclinical diffusion MRI: Part 3—Ex vivo imaging: Data processing, comparisons with microscopy, and tractography

Preclinical diffusion MRI (dMRI) has proven value in methods development and validation, characterizing the biological basis of diffusion phenomena, and comparative anatomy. While dMRI enables in vivo non-invasive characterization of tissue, ex vivo dMRI is increasingly being used to probe tissue microstructure and brain connectivity. Ex vivo dMRI has several experimental advantages that facilitate high spatial resolution and high SNR images, cutting-edge diffusion contrasts, and direct comparison with histological data as a methodological validation. However, there are a number of considerations that must be made when performing ex vivo experiments. The steps from tissue preparation, image acquisition and processing, and interpretation of results are complex, with many decisions that not only differ dramatically from in vivo imaging of small animals, but ultimately affect what questions can be answered using the data. This work concludes a three-part series of recommendations and considerations for preclinical dMRI. Herein, we describe best practices for dMRI of ex vivo tissue, with a focus on image pre-processing, data processing, and comparisons with microscopy. In each section, we attempt to provide guidelines and recommendations but also highlight areas for which no guidelines exist (and why), and where future work should lie. We end by providing guidelines on code sharing and data sharing and point toward open-source software and databases specific to small animal and ex vivo imaging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
24.20%
发文量
376
审稿时长
2-4 weeks
期刊介绍: Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信