IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Chenyan Wang, Yuan Guo, Weijin Du, Zhiqiang Li, Weiyi Chen
{"title":"Gender Differences in Joint Biomechanics During Obstacle Crossing with Different Heights.","authors":"Chenyan Wang, Yuan Guo, Weijin Du, Zhiqiang Li, Weiyi Chen","doi":"10.3390/bioengineering12020189","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying gender-related gait changes offers valuable insights into the role of gender in motor control. It is anticipated that more difficult gait tasks (obstacle crossing) may reveal gender-specific effects on gait parameters. The present study aimed to explore the gait adaptations of male and female participants when stepping over obstacles of 0 cm, 13 cm, 19 cm, and 26 cm in height. A total of 12 male and 12 female participants were recruited. The Vicon motion capture system and AMTI force plates were utilized to obtain the gait parameters. Moreover, spatiotemporal parameters were investigated. Two-way repeated ANOVA (gender × obstacle height) and three-way repeated ANOVA (gender × obstacle height × leg) were performed to compare gait parameters, respectively. Correlations between maximum joint angle and obstacle height were also evaluated. Significant interactions were observed for leading leg swing time, maximum hip extension angle, maximum knee flexion angle, and maximum ankle plantarflexion angle (gender × obstacle height). There were some differences in gait parameters between males and females in the unobstructed gait, and these changes became more evident as obstacle height increased. This study also identified significant differences in gait parameters between leading and trailing legs when stepping over the obstacle.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851498/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12020189","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

识别与性别相关的步态变化为了解性别在运动控制中的作用提供了宝贵的信息。预计难度更大的步态任务(跨越障碍)可能会揭示步态参数的性别特异性影响。本研究旨在探讨男性和女性参与者在跨越高度分别为 0 厘米、13 厘米、19 厘米和 26 厘米的障碍物时的步态适应性。本研究共招募了 12 名男性和 12 名女性参与者。他们利用 Vicon 运动捕捉系统和 AMTI 力板获取步态参数。此外,还对时空参数进行了研究。分别采用双向重复方差分析(性别×障碍物高度)和三向重复方差分析(性别×障碍物高度×腿)比较步态参数。此外,还评估了最大关节角度与障碍物高度之间的相关性。前腿摆动时间、最大伸髋角、最大屈膝角和最大踝关节跖屈角(性别×障碍物高度)之间存在显著的交互作用。在无障碍步态中,男性和女性的步态参数存在一些差异,随着障碍物高度的增加,这些变化变得更加明显。这项研究还发现,在跨过障碍物时,前腿和后腿的步态参数存在明显差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gender Differences in Joint Biomechanics During Obstacle Crossing with Different Heights.

Identifying gender-related gait changes offers valuable insights into the role of gender in motor control. It is anticipated that more difficult gait tasks (obstacle crossing) may reveal gender-specific effects on gait parameters. The present study aimed to explore the gait adaptations of male and female participants when stepping over obstacles of 0 cm, 13 cm, 19 cm, and 26 cm in height. A total of 12 male and 12 female participants were recruited. The Vicon motion capture system and AMTI force plates were utilized to obtain the gait parameters. Moreover, spatiotemporal parameters were investigated. Two-way repeated ANOVA (gender × obstacle height) and three-way repeated ANOVA (gender × obstacle height × leg) were performed to compare gait parameters, respectively. Correlations between maximum joint angle and obstacle height were also evaluated. Significant interactions were observed for leading leg swing time, maximum hip extension angle, maximum knee flexion angle, and maximum ankle plantarflexion angle (gender × obstacle height). There were some differences in gait parameters between males and females in the unobstructed gait, and these changes became more evident as obstacle height increased. This study also identified significant differences in gait parameters between leading and trailing legs when stepping over the obstacle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信