基于增强型 Swin 变换器框架的实时术中二维和术前三维 X 射线图像配准稳健方法。

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Wentao Ye, Jianghong Wu, Wei Zhang, Liyang Sun, Xue Dong, Shuogui Xu
{"title":"基于增强型 Swin 变换器框架的实时术中二维和术前三维 X 射线图像配准稳健方法。","authors":"Wentao Ye, Jianghong Wu, Wei Zhang, Liyang Sun, Xue Dong, Shuogui Xu","doi":"10.3390/bioengineering12020114","DOIUrl":null,"url":null,"abstract":"<p><p>In image-guided surgery (IGS) practice, combining intraoperative 2D X-ray images with preoperative 3D X-ray images from computed tomography (CT) enables the rapid and accurate localization of lesions, which allows for a more minimally invasive and efficient surgery, and also reduces the risk of secondary injuries to nerves and vessels. Conventional optimization-based methods for 2D X-ray and 3D CT matching are limited in speed and precision due to non-convex optimization spaces and a constrained searching range. Recently, deep learning (DL) approaches have demonstrated remarkable proficiency in solving complex nonlinear 2D-3D registration. In this paper, a fast and robust DL-based registration method is proposed that takes an intraoperative 2D X-ray image as input, compares it with the preoperative 3D CT, and outputs their relative pose in x, y, z and pitch, yaw, roll. The method employs a dual-channel Swin transformer feature extractor equipped with attention mechanisms and feature pyramid to facilitate the correlation between features of the 2D X-ray and anatomical pose of CT. Tests on three different regions of interest acquired from open-source datasets show that our method can achieve high pose estimation accuracy (mean rotation and translation error of 0.142° and 0.362 mm, respectively) in a short time (0.02 s). Robustness tests indicate that our proposed method can maintain zero registration failures across varying levels of noise. This generalizable learning-based 2D (X-ray) and 3D (CT) registration algorithm owns promising applications in surgical navigation, targeted radiotherapy, and other clinical operations, with substantial potential for enhancing the accuracy and efficiency of image-guided surgery.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851897/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Robust Method for Real Time Intraoperative 2D and Preoperative 3D X-Ray Image Registration Based on an Enhanced Swin Transformer Framework.\",\"authors\":\"Wentao Ye, Jianghong Wu, Wei Zhang, Liyang Sun, Xue Dong, Shuogui Xu\",\"doi\":\"10.3390/bioengineering12020114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In image-guided surgery (IGS) practice, combining intraoperative 2D X-ray images with preoperative 3D X-ray images from computed tomography (CT) enables the rapid and accurate localization of lesions, which allows for a more minimally invasive and efficient surgery, and also reduces the risk of secondary injuries to nerves and vessels. Conventional optimization-based methods for 2D X-ray and 3D CT matching are limited in speed and precision due to non-convex optimization spaces and a constrained searching range. Recently, deep learning (DL) approaches have demonstrated remarkable proficiency in solving complex nonlinear 2D-3D registration. In this paper, a fast and robust DL-based registration method is proposed that takes an intraoperative 2D X-ray image as input, compares it with the preoperative 3D CT, and outputs their relative pose in x, y, z and pitch, yaw, roll. The method employs a dual-channel Swin transformer feature extractor equipped with attention mechanisms and feature pyramid to facilitate the correlation between features of the 2D X-ray and anatomical pose of CT. Tests on three different regions of interest acquired from open-source datasets show that our method can achieve high pose estimation accuracy (mean rotation and translation error of 0.142° and 0.362 mm, respectively) in a short time (0.02 s). Robustness tests indicate that our proposed method can maintain zero registration failures across varying levels of noise. This generalizable learning-based 2D (X-ray) and 3D (CT) registration algorithm owns promising applications in surgical navigation, targeted radiotherapy, and other clinical operations, with substantial potential for enhancing the accuracy and efficiency of image-guided surgery.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 2\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851897/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12020114\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12020114","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

在图像引导手术(IGS)实践中,将术中二维 X 射线图像与术前计算机断层扫描(CT)的三维 X 射线图像相结合,可以快速准确地定位病灶,从而实现更微创、更高效的手术,并降低对神经和血管造成二次伤害的风险。由于非凸优化空间和搜索范围受限,传统的基于优化的二维 X 射线和三维 CT 匹配方法在速度和精度上都受到了限制。最近,深度学习(DL)方法在解决复杂的非线性 2D-3D 配准方面表现出了非凡的能力。本文提出了一种快速、稳健的基于 DL 的配准方法,该方法以术中二维 X 光图像为输入,将其与术前三维 CT 进行比较,并输出它们在 x、y、z 和俯仰、偏航、滚动方面的相对姿态。该方法采用了双通道斯温变换器特征提取器,配备了注意机制和特征金字塔,以促进 2D X 光片特征与 CT 解剖姿势之间的关联。对从开源数据集获取的三个不同感兴趣区进行的测试表明,我们的方法能在短时间内(0.02 秒)实现较高的姿势估计精度(平均旋转和平移误差分别为 0.142° 和 0.362 mm)。鲁棒性测试表明,我们提出的方法可以在不同的噪声水平下保持零配准失败。这种基于学习的通用二维(X 光)和三维(CT)配准算法在手术导航、靶向放射治疗和其他临床操作中具有广阔的应用前景,在提高图像引导手术的准确性和效率方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust Method for Real Time Intraoperative 2D and Preoperative 3D X-Ray Image Registration Based on an Enhanced Swin Transformer Framework.

In image-guided surgery (IGS) practice, combining intraoperative 2D X-ray images with preoperative 3D X-ray images from computed tomography (CT) enables the rapid and accurate localization of lesions, which allows for a more minimally invasive and efficient surgery, and also reduces the risk of secondary injuries to nerves and vessels. Conventional optimization-based methods for 2D X-ray and 3D CT matching are limited in speed and precision due to non-convex optimization spaces and a constrained searching range. Recently, deep learning (DL) approaches have demonstrated remarkable proficiency in solving complex nonlinear 2D-3D registration. In this paper, a fast and robust DL-based registration method is proposed that takes an intraoperative 2D X-ray image as input, compares it with the preoperative 3D CT, and outputs their relative pose in x, y, z and pitch, yaw, roll. The method employs a dual-channel Swin transformer feature extractor equipped with attention mechanisms and feature pyramid to facilitate the correlation between features of the 2D X-ray and anatomical pose of CT. Tests on three different regions of interest acquired from open-source datasets show that our method can achieve high pose estimation accuracy (mean rotation and translation error of 0.142° and 0.362 mm, respectively) in a short time (0.02 s). Robustness tests indicate that our proposed method can maintain zero registration failures across varying levels of noise. This generalizable learning-based 2D (X-ray) and 3D (CT) registration algorithm owns promising applications in surgical navigation, targeted radiotherapy, and other clinical operations, with substantial potential for enhancing the accuracy and efficiency of image-guided surgery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信