用混合优化方法进行机器学习驱动的维生素 D 缺乏症严重程度预测。

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Usharani Bhimavarapu, Gopi Battineni, Nalini Chintalapudi
{"title":"用混合优化方法进行机器学习驱动的维生素 D 缺乏症严重程度预测。","authors":"Usharani Bhimavarapu, Gopi Battineni, Nalini Chintalapudi","doi":"10.3390/bioengineering12020200","DOIUrl":null,"url":null,"abstract":"<p><p>There is a growing need to predict the severity of vitamin D deficiency (VDD) through non-invasive methods due to its significant global health concerns. For vitamin D-level assessments, the 25-hydroxy vitamin D (25-OH-D) blood test is the standard, but it is often not a practical test. This study is focused on developing a machine learning (ML) model that is clinically acceptable for accurately detecting vitamin D status and eliminates the need for 25-OH-D determination while addressing overfitting. To enhance the capacity of the classification system to predict multiple classes, preprocessing procedures such as data reduction, cleaning, and transformation were used on the raw vitamin D dataset. The improved whale optimization (IWOA) algorithm was used for feature selection, which optimized weight functions to improve prediction accuracy. To gauge the effectiveness of the proposed IWOA algorithm, evaluation metrics like precision, accuracy, recall, and F1-score were used. The results showed a 99.4% accuracy, demonstrating that the proposed method outperformed the others. A comparative analysis demonstrated that the stacking classifier was the superior choice over the other classifiers, highlighting its effectiveness and robustness in detecting deficiencies. Incorporating advanced optimization techniques, the proposed method's promise for generating accurate predictions is highlighted in the study.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851698/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Driven Prediction of Vitamin D Deficiency Severity with Hybrid Optimization.\",\"authors\":\"Usharani Bhimavarapu, Gopi Battineni, Nalini Chintalapudi\",\"doi\":\"10.3390/bioengineering12020200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is a growing need to predict the severity of vitamin D deficiency (VDD) through non-invasive methods due to its significant global health concerns. For vitamin D-level assessments, the 25-hydroxy vitamin D (25-OH-D) blood test is the standard, but it is often not a practical test. This study is focused on developing a machine learning (ML) model that is clinically acceptable for accurately detecting vitamin D status and eliminates the need for 25-OH-D determination while addressing overfitting. To enhance the capacity of the classification system to predict multiple classes, preprocessing procedures such as data reduction, cleaning, and transformation were used on the raw vitamin D dataset. The improved whale optimization (IWOA) algorithm was used for feature selection, which optimized weight functions to improve prediction accuracy. To gauge the effectiveness of the proposed IWOA algorithm, evaluation metrics like precision, accuracy, recall, and F1-score were used. The results showed a 99.4% accuracy, demonstrating that the proposed method outperformed the others. A comparative analysis demonstrated that the stacking classifier was the superior choice over the other classifiers, highlighting its effectiveness and robustness in detecting deficiencies. Incorporating advanced optimization techniques, the proposed method's promise for generating accurate predictions is highlighted in the study.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 2\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851698/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12020200\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12020200","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于维生素 D 缺乏症(VDD)对全球健康的重大影响,人们越来越需要通过非侵入性方法来预测其严重程度。在维生素 D 水平评估方面,25-羟基维生素 D(25-OH-D)血液测试是标准测试方法,但它通常并不实用。本研究的重点是开发一种临床上可接受的机器学习(ML)模型,用于准确检测维生素 D 状态,无需进行 25-OH-D 测定,同时解决过度拟合问题。为了提高分类系统预测多个类别的能力,对原始维生素 D 数据集采用了数据缩减、清理和转换等预处理程序。改进的鲸鱼优化(IWOA)算法被用于特征选择,该算法优化了权重函数以提高预测准确性。为了评估所提出的 IWOA 算法的有效性,使用了精确度、准确度、召回率和 F1 分数等评估指标。结果显示准确率为 99.4%,表明所提出的方法优于其他方法。对比分析表明,与其他分类器相比,堆叠分类器更胜一筹,凸显了它在检测缺陷方面的有效性和鲁棒性。该研究结合了先进的优化技术,强调了拟议方法在生成准确预测方面的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning-Driven Prediction of Vitamin D Deficiency Severity with Hybrid Optimization.

There is a growing need to predict the severity of vitamin D deficiency (VDD) through non-invasive methods due to its significant global health concerns. For vitamin D-level assessments, the 25-hydroxy vitamin D (25-OH-D) blood test is the standard, but it is often not a practical test. This study is focused on developing a machine learning (ML) model that is clinically acceptable for accurately detecting vitamin D status and eliminates the need for 25-OH-D determination while addressing overfitting. To enhance the capacity of the classification system to predict multiple classes, preprocessing procedures such as data reduction, cleaning, and transformation were used on the raw vitamin D dataset. The improved whale optimization (IWOA) algorithm was used for feature selection, which optimized weight functions to improve prediction accuracy. To gauge the effectiveness of the proposed IWOA algorithm, evaluation metrics like precision, accuracy, recall, and F1-score were used. The results showed a 99.4% accuracy, demonstrating that the proposed method outperformed the others. A comparative analysis demonstrated that the stacking classifier was the superior choice over the other classifiers, highlighting its effectiveness and robustness in detecting deficiencies. Incorporating advanced optimization techniques, the proposed method's promise for generating accurate predictions is highlighted in the study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信