{"title":"CXR-Seg:用于胸部 X 光图像肺部分割的新型深度学习网络。","authors":"Sadia Din, Muhammad Shoaib, Erchin Serpedin","doi":"10.3390/bioengineering12020167","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past decade, deep learning techniques, particularly neural networks, have become essential in medical imaging for tasks like image detection, classification, and segmentation. These methods have greatly enhanced diagnostic accuracy, enabling quicker identification and more effective treatments. In chest X-ray analysis, however, challenges remain in accurately segmenting and classifying organs such as the lungs, heart, diaphragm, sternum, and clavicles, as well as detecting abnormalities in the thoracic cavity. Despite progress, these issues highlight the need for improved approaches to overcome segmentation difficulties and enhance diagnostic reliability. In this context, we propose a novel architecture named CXR-Seg, tailored for semantic segmentation of lungs from chest X-ray images. The proposed network mainly consists of four components, including a pre-trained EfficientNet as an encoder to extract feature encodings, a spatial enhancement module embedded in the skip connection to promote the adjacent feature fusion, a transformer attention module at the bottleneck layer, and a multi-scale feature fusion block at the decoder. The performance of the proposed CRX-Seg was evaluated on four publicly available datasets (MC, Darwin, and Shenzhen for chest X-rays, and TCIA for brain flair segmentation from MRI images). The proposed method achieved a Jaccard index, Dice coefficient, accuracy, sensitivity, and specificity of 95.63%, 97.76%, 98.77%, 98.00%, and 99.05%on MC; 91.66%, 95.62%, 96.35%, 95.53%, and 96.94% on V7 Darwin COVID-19; and 92.97%, 96.32%, 96.69%, 96.01%, and 97.40% on the Shenzhen Tuberculosis CXR Dataset, respectively. Conclusively, the proposed network offers improved performance in comparison with state-of-the-art methods, and better generalization for the semantic segmentation of lungs from chest X-ray images.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851456/pdf/","citationCount":"0","resultStr":"{\"title\":\"CXR-Seg: A Novel Deep Learning Network for Lung Segmentation from Chest X-Ray Images.\",\"authors\":\"Sadia Din, Muhammad Shoaib, Erchin Serpedin\",\"doi\":\"10.3390/bioengineering12020167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the past decade, deep learning techniques, particularly neural networks, have become essential in medical imaging for tasks like image detection, classification, and segmentation. These methods have greatly enhanced diagnostic accuracy, enabling quicker identification and more effective treatments. In chest X-ray analysis, however, challenges remain in accurately segmenting and classifying organs such as the lungs, heart, diaphragm, sternum, and clavicles, as well as detecting abnormalities in the thoracic cavity. Despite progress, these issues highlight the need for improved approaches to overcome segmentation difficulties and enhance diagnostic reliability. In this context, we propose a novel architecture named CXR-Seg, tailored for semantic segmentation of lungs from chest X-ray images. The proposed network mainly consists of four components, including a pre-trained EfficientNet as an encoder to extract feature encodings, a spatial enhancement module embedded in the skip connection to promote the adjacent feature fusion, a transformer attention module at the bottleneck layer, and a multi-scale feature fusion block at the decoder. The performance of the proposed CRX-Seg was evaluated on four publicly available datasets (MC, Darwin, and Shenzhen for chest X-rays, and TCIA for brain flair segmentation from MRI images). The proposed method achieved a Jaccard index, Dice coefficient, accuracy, sensitivity, and specificity of 95.63%, 97.76%, 98.77%, 98.00%, and 99.05%on MC; 91.66%, 95.62%, 96.35%, 95.53%, and 96.94% on V7 Darwin COVID-19; and 92.97%, 96.32%, 96.69%, 96.01%, and 97.40% on the Shenzhen Tuberculosis CXR Dataset, respectively. Conclusively, the proposed network offers improved performance in comparison with state-of-the-art methods, and better generalization for the semantic segmentation of lungs from chest X-ray images.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 2\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851456/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12020167\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12020167","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
CXR-Seg: A Novel Deep Learning Network for Lung Segmentation from Chest X-Ray Images.
Over the past decade, deep learning techniques, particularly neural networks, have become essential in medical imaging for tasks like image detection, classification, and segmentation. These methods have greatly enhanced diagnostic accuracy, enabling quicker identification and more effective treatments. In chest X-ray analysis, however, challenges remain in accurately segmenting and classifying organs such as the lungs, heart, diaphragm, sternum, and clavicles, as well as detecting abnormalities in the thoracic cavity. Despite progress, these issues highlight the need for improved approaches to overcome segmentation difficulties and enhance diagnostic reliability. In this context, we propose a novel architecture named CXR-Seg, tailored for semantic segmentation of lungs from chest X-ray images. The proposed network mainly consists of four components, including a pre-trained EfficientNet as an encoder to extract feature encodings, a spatial enhancement module embedded in the skip connection to promote the adjacent feature fusion, a transformer attention module at the bottleneck layer, and a multi-scale feature fusion block at the decoder. The performance of the proposed CRX-Seg was evaluated on four publicly available datasets (MC, Darwin, and Shenzhen for chest X-rays, and TCIA for brain flair segmentation from MRI images). The proposed method achieved a Jaccard index, Dice coefficient, accuracy, sensitivity, and specificity of 95.63%, 97.76%, 98.77%, 98.00%, and 99.05%on MC; 91.66%, 95.62%, 96.35%, 95.53%, and 96.94% on V7 Darwin COVID-19; and 92.97%, 96.32%, 96.69%, 96.01%, and 97.40% on the Shenzhen Tuberculosis CXR Dataset, respectively. Conclusively, the proposed network offers improved performance in comparison with state-of-the-art methods, and better generalization for the semantic segmentation of lungs from chest X-ray images.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering