Su'ad A Yoon, Kevin So, Joshua G Harrison, Vivaswat Shastry, Katherine Urie, Zach Gompert, Pedro Miura, Angela M Smilanich, Matthew L Forister, Samridhi Chaturvedi
{"title":"优质食物增强昆虫食草动物病毒感染过程中的免疫反应并影响基因表达","authors":"Su'ad A Yoon, Kevin So, Joshua G Harrison, Vivaswat Shastry, Katherine Urie, Zach Gompert, Pedro Miura, Angela M Smilanich, Matthew L Forister, Samridhi Chaturvedi","doi":"10.1111/mec.17694","DOIUrl":null,"url":null,"abstract":"<p><p>Herbivorous insects tolerate chemical and metabolic variation in their host plant diet by modulating physiological traits. Insect immune response is one such trait that plays a crucial role in maintaining fitness but can be heavily influenced by variation in host plant quality. An important question is how the use of different host plants affects the ability of herbivorous insects to resist viral pathogens. Furthermore, the transcriptional changes associated with this interaction of diet and viral pathogens remain understudied. The Melissa blue butterfly (Lycaeides melissa) has colonised the exotic legume Medicago sativa as a larval host within the past 200 years. We used this system to study the interplay between the effects of host plant variation and viral infection on physiological responses and global gene expression. We measured immune strength in response to infection by the Junonia coenia densovirus (JcDV) in two ways: (1) direct measurement of phenoloxidase activity and melanisation, and (2) transcriptional sequencing of individuals exposed to different viral and host plant treatments. Our results demonstrate that viral infection caused total phenoloxidase (total PO) to increase and viral infection and host plant interactively affected total PO such that for infected larvae, total PO was significantly higher for larvae consuming the native host plant. Additionally, L. melissa larvae differentially expressed several hundred genes in response to host plant treatment, but with minimal changes in gene expression in response to viral infection. Not only immune genes, but several detoxification, transporter, and oxidase genes were differentially expressed in response to host plant treatments. These results demonstrate that in herbivorous insects, consumption of a novel host plant can alter both physiological and transcriptional responses relevant to viral infection, emphasising the importance of considering immune and detoxification mechanisms into models of evolution of host range in herbivorous insects.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17694"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Quality Diet Enhances Immune Response and Affects Gene Expression During Viral Infection in an Insect Herbivore.\",\"authors\":\"Su'ad A Yoon, Kevin So, Joshua G Harrison, Vivaswat Shastry, Katherine Urie, Zach Gompert, Pedro Miura, Angela M Smilanich, Matthew L Forister, Samridhi Chaturvedi\",\"doi\":\"10.1111/mec.17694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Herbivorous insects tolerate chemical and metabolic variation in their host plant diet by modulating physiological traits. Insect immune response is one such trait that plays a crucial role in maintaining fitness but can be heavily influenced by variation in host plant quality. An important question is how the use of different host plants affects the ability of herbivorous insects to resist viral pathogens. Furthermore, the transcriptional changes associated with this interaction of diet and viral pathogens remain understudied. The Melissa blue butterfly (Lycaeides melissa) has colonised the exotic legume Medicago sativa as a larval host within the past 200 years. We used this system to study the interplay between the effects of host plant variation and viral infection on physiological responses and global gene expression. We measured immune strength in response to infection by the Junonia coenia densovirus (JcDV) in two ways: (1) direct measurement of phenoloxidase activity and melanisation, and (2) transcriptional sequencing of individuals exposed to different viral and host plant treatments. Our results demonstrate that viral infection caused total phenoloxidase (total PO) to increase and viral infection and host plant interactively affected total PO such that for infected larvae, total PO was significantly higher for larvae consuming the native host plant. Additionally, L. melissa larvae differentially expressed several hundred genes in response to host plant treatment, but with minimal changes in gene expression in response to viral infection. Not only immune genes, but several detoxification, transporter, and oxidase genes were differentially expressed in response to host plant treatments. These results demonstrate that in herbivorous insects, consumption of a novel host plant can alter both physiological and transcriptional responses relevant to viral infection, emphasising the importance of considering immune and detoxification mechanisms into models of evolution of host range in herbivorous insects.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\" \",\"pages\":\"e17694\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/mec.17694\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17694","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
High Quality Diet Enhances Immune Response and Affects Gene Expression During Viral Infection in an Insect Herbivore.
Herbivorous insects tolerate chemical and metabolic variation in their host plant diet by modulating physiological traits. Insect immune response is one such trait that plays a crucial role in maintaining fitness but can be heavily influenced by variation in host plant quality. An important question is how the use of different host plants affects the ability of herbivorous insects to resist viral pathogens. Furthermore, the transcriptional changes associated with this interaction of diet and viral pathogens remain understudied. The Melissa blue butterfly (Lycaeides melissa) has colonised the exotic legume Medicago sativa as a larval host within the past 200 years. We used this system to study the interplay between the effects of host plant variation and viral infection on physiological responses and global gene expression. We measured immune strength in response to infection by the Junonia coenia densovirus (JcDV) in two ways: (1) direct measurement of phenoloxidase activity and melanisation, and (2) transcriptional sequencing of individuals exposed to different viral and host plant treatments. Our results demonstrate that viral infection caused total phenoloxidase (total PO) to increase and viral infection and host plant interactively affected total PO such that for infected larvae, total PO was significantly higher for larvae consuming the native host plant. Additionally, L. melissa larvae differentially expressed several hundred genes in response to host plant treatment, but with minimal changes in gene expression in response to viral infection. Not only immune genes, but several detoxification, transporter, and oxidase genes were differentially expressed in response to host plant treatments. These results demonstrate that in herbivorous insects, consumption of a novel host plant can alter both physiological and transcriptional responses relevant to viral infection, emphasising the importance of considering immune and detoxification mechanisms into models of evolution of host range in herbivorous insects.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms