二甲双胍对肠缺血再灌注损伤大鼠氧化应激和ICAM-1/TLR4/NF-Κβ水平的调节

IF 2.5 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Inci Turan, Hale Sayan Ozacmak, Veysel Haktan Ozacmak, Figen Barut
{"title":"二甲双胍对肠缺血再灌注损伤大鼠氧化应激和ICAM-1/TLR4/NF-Κβ水平的调节","authors":"Inci Turan,&nbsp;Hale Sayan Ozacmak,&nbsp;Veysel Haktan Ozacmak,&nbsp;Figen Barut","doi":"10.1007/s12013-025-01687-5","DOIUrl":null,"url":null,"abstract":"<div><p>Metformin, a biguanide drug, is used for its antihyperglycemic effects. The purpose of the present study was to investigate the effects of metformin on the experimental model of intestinal ischemia-reperfusion (I/R) injury. Ischemia was induced by superior mesenteric artery occlusion followed by reperfusion. Metformin was administered orally by gavage at doses of 50, 100 or 200 mg/kg for one week before the surgery. Rats were divided to five groups (n = 8 for each): Sham control group; I/R control group; Metformin50 treated I/R group; Metformin100 treated I/R group; and Metformin200 treated I/R group. Tissue levels of malondialdehyde (MDA), glutathione (GSH), myeloperoxidase (MPO) activity, intercellular adhesion molecule-1 (ICAM-1), toll-like receptor 4 (TLR4), and nuclear factor-κB (NF-κB) as well as histological analysis were evaluated. Metformin treatment decreased the levels of MDA in 100 and 200 mg/kg doses besides lowering the MPO activity and ICAM-1 levels in all doses. Metformin also reduced NF-κB levels at dose of 200 mg/kg and improved histopathological scores at doses of 100 and 200 mg/kg. The treatment with metformin can prevent I/R-induced intestinal injury through down-regulating ICAM-1 and NF-κB levels, reducing oxidative stress, and lowering neutrophil accumulation. We propose that metformin could be a therapeutic agent in intestinal I/R.</p></div>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":"83 3","pages":"3037 - 3046"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulation of the Oxidative Stress and ICAM-1/TLR4/NF-Κβ Levels by Metformin in Intestinal Ischemia/Reperfusion Injury in Rats\",\"authors\":\"Inci Turan,&nbsp;Hale Sayan Ozacmak,&nbsp;Veysel Haktan Ozacmak,&nbsp;Figen Barut\",\"doi\":\"10.1007/s12013-025-01687-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metformin, a biguanide drug, is used for its antihyperglycemic effects. The purpose of the present study was to investigate the effects of metformin on the experimental model of intestinal ischemia-reperfusion (I/R) injury. Ischemia was induced by superior mesenteric artery occlusion followed by reperfusion. Metformin was administered orally by gavage at doses of 50, 100 or 200 mg/kg for one week before the surgery. Rats were divided to five groups (n = 8 for each): Sham control group; I/R control group; Metformin50 treated I/R group; Metformin100 treated I/R group; and Metformin200 treated I/R group. Tissue levels of malondialdehyde (MDA), glutathione (GSH), myeloperoxidase (MPO) activity, intercellular adhesion molecule-1 (ICAM-1), toll-like receptor 4 (TLR4), and nuclear factor-κB (NF-κB) as well as histological analysis were evaluated. Metformin treatment decreased the levels of MDA in 100 and 200 mg/kg doses besides lowering the MPO activity and ICAM-1 levels in all doses. Metformin also reduced NF-κB levels at dose of 200 mg/kg and improved histopathological scores at doses of 100 and 200 mg/kg. The treatment with metformin can prevent I/R-induced intestinal injury through down-regulating ICAM-1 and NF-κB levels, reducing oxidative stress, and lowering neutrophil accumulation. We propose that metformin could be a therapeutic agent in intestinal I/R.</p></div>\",\"PeriodicalId\":510,\"journal\":{\"name\":\"Cell Biochemistry and Biophysics\",\"volume\":\"83 3\",\"pages\":\"3037 - 3046\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12013-025-01687-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s12013-025-01687-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

二甲双胍是一种双胍类药物,具有降糖作用。本研究旨在探讨二甲双胍对肠缺血再灌注(I/R)损伤实验模型的影响。肠系膜上动脉闭塞致缺血后再灌注。术前1周以50、100或200 mg/kg的剂量灌胃给予二甲双胍。将大鼠分为5组,每组8只:Sham对照组;I/R对照组;二甲双胍治疗I/R组;二甲双胍100治疗I/R组;二甲双胍治疗I/R组。评估各组组织丙二醛(MDA)、谷胱甘肽(GSH)、髓过氧化物酶(MPO)活性、细胞间粘附分子-1 (ICAM-1)、toll样受体4 (TLR4)、核因子-κB (NF-κB)水平及组织学分析。二甲双胍在100和200 mg/kg剂量下降低了MDA水平,同时降低了MPO活性和ICAM-1水平。二甲双胍在200 mg/kg剂量下也能降低NF-κB水平,并改善100和200 mg/kg剂量下的组织病理学评分。二甲双胍治疗可通过下调ICAM-1和NF-κB水平,减少氧化应激,降低中性粒细胞积累,预防I/ r诱导的肠道损伤。我们认为二甲双胍可能是一种治疗肠道I/R的药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modulation of the Oxidative Stress and ICAM-1/TLR4/NF-Κβ Levels by Metformin in Intestinal Ischemia/Reperfusion Injury in Rats

Modulation of the Oxidative Stress and ICAM-1/TLR4/NF-Κβ Levels by Metformin in Intestinal Ischemia/Reperfusion Injury in Rats

Metformin, a biguanide drug, is used for its antihyperglycemic effects. The purpose of the present study was to investigate the effects of metformin on the experimental model of intestinal ischemia-reperfusion (I/R) injury. Ischemia was induced by superior mesenteric artery occlusion followed by reperfusion. Metformin was administered orally by gavage at doses of 50, 100 or 200 mg/kg for one week before the surgery. Rats were divided to five groups (n = 8 for each): Sham control group; I/R control group; Metformin50 treated I/R group; Metformin100 treated I/R group; and Metformin200 treated I/R group. Tissue levels of malondialdehyde (MDA), glutathione (GSH), myeloperoxidase (MPO) activity, intercellular adhesion molecule-1 (ICAM-1), toll-like receptor 4 (TLR4), and nuclear factor-κB (NF-κB) as well as histological analysis were evaluated. Metformin treatment decreased the levels of MDA in 100 and 200 mg/kg doses besides lowering the MPO activity and ICAM-1 levels in all doses. Metformin also reduced NF-κB levels at dose of 200 mg/kg and improved histopathological scores at doses of 100 and 200 mg/kg. The treatment with metformin can prevent I/R-induced intestinal injury through down-regulating ICAM-1 and NF-κB levels, reducing oxidative stress, and lowering neutrophil accumulation. We propose that metformin could be a therapeutic agent in intestinal I/R.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Biochemistry and Biophysics
Cell Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
72
审稿时长
7.5 months
期刊介绍: Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized. Examples of subject areas that CBB publishes are: · biochemical and biophysical aspects of cell structure and function; · interactions of cells and their molecular/macromolecular constituents; · innovative developments in genetic and biomolecular engineering; · computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies; · photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信