{"title":"高级阴离子交换膜:结构洞察与性能优化。","authors":"Lin Liu, Wenguang Du, Ning Zhang","doi":"10.1002/asia.202401454","DOIUrl":null,"url":null,"abstract":"<p>With the increasing demand for clean energy, driven by advancements in science and technology, anion exchange membrane fuel cells (AEMFCs) have emerged as a promising solution for efficient and clean energy conversion. As the core component of AEMFCs, anion exchange membranes (AEMs) are crucial for ion transport and the separation of the cathode and anode. The performance of AEMs primarily depends on two key factors: ionic conductivity and stability, which often require a delicate balance. The ion conduction process is closely linked to the membrane's microscopic structure. This concept article reviews the development of various AEM types, including homogeneous polymer membranes, hybrid membranes, and nanoporous framework membranes, with a focus on their structural characteristics. Additionally, it explores the design and optimization of AEMs in relation to key properties such as ionic conductivity, dimensional stability, and alkali resistance, providing a reference for future innovations in ion-exchange membranes for AEMFCs.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":"20 6","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced Anion Exchange Membranes: Structural Insights and Property Optimization\",\"authors\":\"Lin Liu, Wenguang Du, Ning Zhang\",\"doi\":\"10.1002/asia.202401454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the increasing demand for clean energy, driven by advancements in science and technology, anion exchange membrane fuel cells (AEMFCs) have emerged as a promising solution for efficient and clean energy conversion. As the core component of AEMFCs, anion exchange membranes (AEMs) are crucial for ion transport and the separation of the cathode and anode. The performance of AEMs primarily depends on two key factors: ionic conductivity and stability, which often require a delicate balance. The ion conduction process is closely linked to the membrane's microscopic structure. This concept article reviews the development of various AEM types, including homogeneous polymer membranes, hybrid membranes, and nanoporous framework membranes, with a focus on their structural characteristics. Additionally, it explores the design and optimization of AEMs in relation to key properties such as ionic conductivity, dimensional stability, and alkali resistance, providing a reference for future innovations in ion-exchange membranes for AEMFCs.</p>\",\"PeriodicalId\":145,\"journal\":{\"name\":\"Chemistry - An Asian Journal\",\"volume\":\"20 6\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - An Asian Journal\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asia.202401454\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asia.202401454","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Advanced Anion Exchange Membranes: Structural Insights and Property Optimization
With the increasing demand for clean energy, driven by advancements in science and technology, anion exchange membrane fuel cells (AEMFCs) have emerged as a promising solution for efficient and clean energy conversion. As the core component of AEMFCs, anion exchange membranes (AEMs) are crucial for ion transport and the separation of the cathode and anode. The performance of AEMs primarily depends on two key factors: ionic conductivity and stability, which often require a delicate balance. The ion conduction process is closely linked to the membrane's microscopic structure. This concept article reviews the development of various AEM types, including homogeneous polymer membranes, hybrid membranes, and nanoporous framework membranes, with a focus on their structural characteristics. Additionally, it explores the design and optimization of AEMs in relation to key properties such as ionic conductivity, dimensional stability, and alkali resistance, providing a reference for future innovations in ion-exchange membranes for AEMFCs.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).