Hikurangi俯冲带水文地质系统的地球化学和热约束及其在慢滑中的作用

IF 2.9 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
I. Aylward, E. A. Solomon, M. E. Torres, R. N. Harris
{"title":"Hikurangi俯冲带水文地质系统的地球化学和热约束及其在慢滑中的作用","authors":"I. Aylward,&nbsp;E. A. Solomon,&nbsp;M. E. Torres,&nbsp;R. N. Harris","doi":"10.1029/2024GC011778","DOIUrl":null,"url":null,"abstract":"<p>Fluid generation and migration regulate the development of pore fluid pressure, which is hypothesized to influence the occurrence of slow slip events at subduction zones. Seafloor seep sites present the opportunity to directly sample fluids flowing through the accretionary wedge and assess the hydrogeologic conditions of the outer forearc. We present heat flow measurements and pore water geochemistry from sediment cores collected at fault-hosted seep sites on the southern and northern Hikurangi margin, offshore the North Island of New Zealand. These measurements span the deformation front to the shelf break. Along the northern margin, heat flow data do not show anomalies that can be obviously attributed to the discharge of warm fluids. Pore fluid compositions indicate that seep fluids originate from compaction within the uppermost wedge. Reactive-transport modeling of pore water solute profiles produces fluid flow rate estimates ≤2 cm/yr. Shallow fluid sources and low discharge rates at offshore fault-hosted seeps suggest that the sampled fault zones are characterized by low permeability at depth, preventing efficient drainage of the megathrust and underthrust sediments to the seafloor. These results provide additional evidence that the northern Hikurangi margin plate boundary is associated with high pore fluid pressures that likely act as a control on slow slip activity.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011778","citationCount":"0","resultStr":"{\"title\":\"Geochemical and Thermal Constraints on the Hikurangi Subduction Zone Hydrogeologic System and Its Role in Slow Slip\",\"authors\":\"I. Aylward,&nbsp;E. A. Solomon,&nbsp;M. E. Torres,&nbsp;R. N. Harris\",\"doi\":\"10.1029/2024GC011778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fluid generation and migration regulate the development of pore fluid pressure, which is hypothesized to influence the occurrence of slow slip events at subduction zones. Seafloor seep sites present the opportunity to directly sample fluids flowing through the accretionary wedge and assess the hydrogeologic conditions of the outer forearc. We present heat flow measurements and pore water geochemistry from sediment cores collected at fault-hosted seep sites on the southern and northern Hikurangi margin, offshore the North Island of New Zealand. These measurements span the deformation front to the shelf break. Along the northern margin, heat flow data do not show anomalies that can be obviously attributed to the discharge of warm fluids. Pore fluid compositions indicate that seep fluids originate from compaction within the uppermost wedge. Reactive-transport modeling of pore water solute profiles produces fluid flow rate estimates ≤2 cm/yr. Shallow fluid sources and low discharge rates at offshore fault-hosted seeps suggest that the sampled fault zones are characterized by low permeability at depth, preventing efficient drainage of the megathrust and underthrust sediments to the seafloor. These results provide additional evidence that the northern Hikurangi margin plate boundary is associated with high pore fluid pressures that likely act as a control on slow slip activity.</p>\",\"PeriodicalId\":50422,\"journal\":{\"name\":\"Geochemistry Geophysics Geosystems\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011778\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry Geophysics Geosystems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011778\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011778","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

流体的生成和运移调节了孔隙流体压力的发展,从而影响了俯冲带慢滑事件的发生。海底渗漏点提供了直接对流经增生楔的流体进行取样的机会,并评估了外前弧的水文地质条件。本文介绍了在新西兰北岛附近Hikurangi边缘南部和北部断层带渗漏点收集的沉积物岩心的热流测量和孔隙水地球化学。这些测量跨越了变形前沿到陆架断裂。在北缘,热流数据没有显示出明显归因于热流体排放的异常。孔隙流体组成表明,渗漏流体来源于最上部楔体内的压实作用。孔隙水溶质剖面的反应输运模型得出的流体流速估计≤2cm /yr。浅层流体源和海上断层带渗漏的低排放速率表明,采样断裂带的深层渗透性低,阻碍了大逆冲和逆冲下沉积物向海底的有效排水。这些结果提供了额外的证据,表明北部Hikurangi边缘板块边界与高孔隙流体压力有关,可能对慢滑活动起控制作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Geochemical and Thermal Constraints on the Hikurangi Subduction Zone Hydrogeologic System and Its Role in Slow Slip

Geochemical and Thermal Constraints on the Hikurangi Subduction Zone Hydrogeologic System and Its Role in Slow Slip

Fluid generation and migration regulate the development of pore fluid pressure, which is hypothesized to influence the occurrence of slow slip events at subduction zones. Seafloor seep sites present the opportunity to directly sample fluids flowing through the accretionary wedge and assess the hydrogeologic conditions of the outer forearc. We present heat flow measurements and pore water geochemistry from sediment cores collected at fault-hosted seep sites on the southern and northern Hikurangi margin, offshore the North Island of New Zealand. These measurements span the deformation front to the shelf break. Along the northern margin, heat flow data do not show anomalies that can be obviously attributed to the discharge of warm fluids. Pore fluid compositions indicate that seep fluids originate from compaction within the uppermost wedge. Reactive-transport modeling of pore water solute profiles produces fluid flow rate estimates ≤2 cm/yr. Shallow fluid sources and low discharge rates at offshore fault-hosted seeps suggest that the sampled fault zones are characterized by low permeability at depth, preventing efficient drainage of the megathrust and underthrust sediments to the seafloor. These results provide additional evidence that the northern Hikurangi margin plate boundary is associated with high pore fluid pressures that likely act as a control on slow slip activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochemistry Geophysics Geosystems
Geochemistry Geophysics Geosystems 地学-地球化学与地球物理
CiteScore
5.90
自引率
11.40%
发文量
252
审稿时长
1 months
期刊介绍: Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged. Areas of interest for this peer-reviewed journal include, but are not limited to: The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution Principles and applications of geochemical proxies to studies of Earth history The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信