季节性水文和景观地形的相互作用驱动弗雷泽河黑碳输出

IF 3.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Emily Brown, Sasha Wagner, Brian P. V. Hunt
{"title":"季节性水文和景观地形的相互作用驱动弗雷泽河黑碳输出","authors":"Emily Brown,&nbsp;Sasha Wagner,&nbsp;Brian P. V. Hunt","doi":"10.1029/2024JG008627","DOIUrl":null,"url":null,"abstract":"<p>Fire is an important driver of carbon cycling across terrestrial and aquatic ecosystems, but global fire regimes are changing. Black carbon (BC), a product of biomass burning, is more environmentally persistent than its parent biomass carbon and cycles differently than bulk organic carbon. This study aims to refine understanding of the environmental drivers of BC flux from land to ocean through year-long measurement of BC in the Fraser River in British Columbia, Canada. The Fraser River’s environmental context is distinct from systems that currently form the basis of understanding of BC export, characterized by highly seasonally variable hydrology, and with its basin spanning diverse ecosystems from glaciated mountainous regions to dry flatlands. We found that the Fraser River exported 18,765 ± 2,734 Mg yr<sup>−1</sup> of BC, with dissolved black carbon (DBC) comprising 3.3 ± 0.9% of annual dissolved organic carbon (DOC) flux, both lower than previous estimates would suggest. Strong seasonal variation in the DBC content of DOC and BC aromaticity were measured in the Fraser River. This reveals the importance of seasonal hydrology in the export of different pools of BC and indicates that seasonality and hydrologic regime should be given more consideration in future estimations of global riverine BC flux. These findings bring to light the importance of seasonality, hydrology, and basin topography in BC transport, with implications for global carbon cycles in a changing climate.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008627","citationCount":"0","resultStr":"{\"title\":\"Interplay of Seasonal Hydrology and Landscape Topography Drives Black Carbon Export in the Fraser River\",\"authors\":\"Emily Brown,&nbsp;Sasha Wagner,&nbsp;Brian P. V. Hunt\",\"doi\":\"10.1029/2024JG008627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fire is an important driver of carbon cycling across terrestrial and aquatic ecosystems, but global fire regimes are changing. Black carbon (BC), a product of biomass burning, is more environmentally persistent than its parent biomass carbon and cycles differently than bulk organic carbon. This study aims to refine understanding of the environmental drivers of BC flux from land to ocean through year-long measurement of BC in the Fraser River in British Columbia, Canada. The Fraser River’s environmental context is distinct from systems that currently form the basis of understanding of BC export, characterized by highly seasonally variable hydrology, and with its basin spanning diverse ecosystems from glaciated mountainous regions to dry flatlands. We found that the Fraser River exported 18,765 ± 2,734 Mg yr<sup>−1</sup> of BC, with dissolved black carbon (DBC) comprising 3.3 ± 0.9% of annual dissolved organic carbon (DOC) flux, both lower than previous estimates would suggest. Strong seasonal variation in the DBC content of DOC and BC aromaticity were measured in the Fraser River. This reveals the importance of seasonal hydrology in the export of different pools of BC and indicates that seasonality and hydrologic regime should be given more consideration in future estimations of global riverine BC flux. These findings bring to light the importance of seasonality, hydrology, and basin topography in BC transport, with implications for global carbon cycles in a changing climate.</p>\",\"PeriodicalId\":16003,\"journal\":{\"name\":\"Journal of Geophysical Research: Biogeosciences\",\"volume\":\"130 3\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008627\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Biogeosciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008627\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008627","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

火灾是陆地和水生生态系统碳循环的重要驱动力,但全球火灾制度正在发生变化。黑碳(BC)是生物质燃烧的产物,比其母体生物质碳具有更强的环境持久性,其循环与散装有机碳不同。本研究旨在通过对加拿大不列颠哥伦比亚省弗雷泽河一年的BC测量,完善对BC从陆地到海洋通量的环境驱动因素的理解。弗雷泽河的环境背景不同于目前构成不列颠哥伦比亚省出口理解基础的系统,其特点是高度季节性变化的水文,其流域跨越从冰川山区到干燥平原的各种生态系统。我们发现,弗雷泽河输出了18765±2,734 Mg / yr - 1的BC,其中溶解的黑碳(DBC)占年溶解有机碳(DOC)通量的3.3±0.9%,两者都低于之前的估计。弗雷泽河中DOC的DBC含量和BC芳香性呈明显的季节变化。这揭示了季节水文在不同BC库输出中的重要性,并表明在未来估计全球河流BC通量时应更多地考虑季节性和水文状况。这些发现揭示了季节性、水文和盆地地形在BC运输中的重要性,并对气候变化中的全球碳循环产生了影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interplay of Seasonal Hydrology and Landscape Topography Drives Black Carbon Export in the Fraser River

Interplay of Seasonal Hydrology and Landscape Topography Drives Black Carbon Export in the Fraser River

Fire is an important driver of carbon cycling across terrestrial and aquatic ecosystems, but global fire regimes are changing. Black carbon (BC), a product of biomass burning, is more environmentally persistent than its parent biomass carbon and cycles differently than bulk organic carbon. This study aims to refine understanding of the environmental drivers of BC flux from land to ocean through year-long measurement of BC in the Fraser River in British Columbia, Canada. The Fraser River’s environmental context is distinct from systems that currently form the basis of understanding of BC export, characterized by highly seasonally variable hydrology, and with its basin spanning diverse ecosystems from glaciated mountainous regions to dry flatlands. We found that the Fraser River exported 18,765 ± 2,734 Mg yr−1 of BC, with dissolved black carbon (DBC) comprising 3.3 ± 0.9% of annual dissolved organic carbon (DOC) flux, both lower than previous estimates would suggest. Strong seasonal variation in the DBC content of DOC and BC aromaticity were measured in the Fraser River. This reveals the importance of seasonal hydrology in the export of different pools of BC and indicates that seasonality and hydrologic regime should be given more consideration in future estimations of global riverine BC flux. These findings bring to light the importance of seasonality, hydrology, and basin topography in BC transport, with implications for global carbon cycles in a changing climate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Biogeosciences
Journal of Geophysical Research: Biogeosciences Earth and Planetary Sciences-Paleontology
CiteScore
6.60
自引率
5.40%
发文量
242
期刊介绍: JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信