寄生于花蜜中的细菌通过改变花蜜的化学性质,对共生卵类寄生蜂的寿命产生不同的影响

IF 2.2 3区 农林科学 Q2 AGRICULTURE, MULTIDISCIPLINARY
Evgenia Sarakatsani, Jay Darryl L. Ermio, Shahinoor Rahman, Patrizia Bella, Alfonso Agrò, Mirella Lo Pinto, Ezio Peri, Stefano Colazza, Bart Lievens, Michael Rostás, Antonino Cusumano
{"title":"寄生于花蜜中的细菌通过改变花蜜的化学性质,对共生卵类寄生蜂的寿命产生不同的影响","authors":"Evgenia Sarakatsani,&nbsp;Jay Darryl L. Ermio,&nbsp;Shahinoor Rahman,&nbsp;Patrizia Bella,&nbsp;Alfonso Agrò,&nbsp;Mirella Lo Pinto,&nbsp;Ezio Peri,&nbsp;Stefano Colazza,&nbsp;Bart Lievens,&nbsp;Michael Rostás,&nbsp;Antonino Cusumano","doi":"10.1111/aab.12959","DOIUrl":null,"url":null,"abstract":"<p>Flowering plants can be introduced in modern agroecosystems to support resident natural enemies in the context of Conservation Biological Control (CBC). Buckwheat (<i>Fagopyrum esculentum</i>) (Polygonales: Polygonaceae) has been shown to enhance the longevity of several parasitoids through the provision of high quality and easily accessible floral nectar. Yet floral nectar is ubiquitously colonized by microbes which can change nectar chemistry with consequences for parasitoids. Nonetheless, how bacteria associated with buckwheat floral nectar affect parasitoid performance is not known. In this study, adult females of <i>Trissolcus basalis</i> (Hymenoptera: Scelionidae) and <i>Ooencyrtus telenomicida</i> (Hymenoptera: Encyrtidae), two parasitoids of <i>Nezara viridula</i> (Hemiptera: Pentatomidae), were provided with synthetic nectar fermented by 14 bacterial isolates originating from buckwheat nectar. We recorded the effect of bacterial fermentation on female longevity and nectar chemistry. In the case of <i>T. basalis</i>, females consuming nectar fermented by <i>Bacillus</i> sp., <i>Brevibacillus</i> sp., <i>Brevibacterium frigoritolerans</i>, <i>Saccharibacillus endophyticus</i>, and <i>Terribacillus saccharophilus</i> significantly enhanced their longevity compared with females fed with non-fermented nectar. For <i>O. telenomicida</i>, enhanced longevity was recorded only in the case of <i>B. frigoritolerans</i> and <i>Pantoea dispersa</i>. For both parasitoids, no negative effects due to bacterial fermentation of nectar were recorded. Chemical investigations of bacteria-fermented nectars revealed an increased diversity in the composition of sugars and sugar alcohols, whereas non-fermented nectar only contained sucrose. Our findings show that nectar-inhabiting bacteria are important “hidden players” in the interactions between flowers and parasitoids, an indication that a better understanding of plant–microbe–insect interactions could improve CBC programmes.</p>","PeriodicalId":7977,"journal":{"name":"Annals of Applied Biology","volume":"186 2","pages":"204-215"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/aab.12959","citationCount":"0","resultStr":"{\"title\":\"Nectar-inhabiting bacteria differently affect the longevity of co-occurring egg parasitoid species by modifying nectar chemistry\",\"authors\":\"Evgenia Sarakatsani,&nbsp;Jay Darryl L. Ermio,&nbsp;Shahinoor Rahman,&nbsp;Patrizia Bella,&nbsp;Alfonso Agrò,&nbsp;Mirella Lo Pinto,&nbsp;Ezio Peri,&nbsp;Stefano Colazza,&nbsp;Bart Lievens,&nbsp;Michael Rostás,&nbsp;Antonino Cusumano\",\"doi\":\"10.1111/aab.12959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flowering plants can be introduced in modern agroecosystems to support resident natural enemies in the context of Conservation Biological Control (CBC). Buckwheat (<i>Fagopyrum esculentum</i>) (Polygonales: Polygonaceae) has been shown to enhance the longevity of several parasitoids through the provision of high quality and easily accessible floral nectar. Yet floral nectar is ubiquitously colonized by microbes which can change nectar chemistry with consequences for parasitoids. Nonetheless, how bacteria associated with buckwheat floral nectar affect parasitoid performance is not known. In this study, adult females of <i>Trissolcus basalis</i> (Hymenoptera: Scelionidae) and <i>Ooencyrtus telenomicida</i> (Hymenoptera: Encyrtidae), two parasitoids of <i>Nezara viridula</i> (Hemiptera: Pentatomidae), were provided with synthetic nectar fermented by 14 bacterial isolates originating from buckwheat nectar. We recorded the effect of bacterial fermentation on female longevity and nectar chemistry. In the case of <i>T. basalis</i>, females consuming nectar fermented by <i>Bacillus</i> sp., <i>Brevibacillus</i> sp., <i>Brevibacterium frigoritolerans</i>, <i>Saccharibacillus endophyticus</i>, and <i>Terribacillus saccharophilus</i> significantly enhanced their longevity compared with females fed with non-fermented nectar. For <i>O. telenomicida</i>, enhanced longevity was recorded only in the case of <i>B. frigoritolerans</i> and <i>Pantoea dispersa</i>. For both parasitoids, no negative effects due to bacterial fermentation of nectar were recorded. Chemical investigations of bacteria-fermented nectars revealed an increased diversity in the composition of sugars and sugar alcohols, whereas non-fermented nectar only contained sucrose. Our findings show that nectar-inhabiting bacteria are important “hidden players” in the interactions between flowers and parasitoids, an indication that a better understanding of plant–microbe–insect interactions could improve CBC programmes.</p>\",\"PeriodicalId\":7977,\"journal\":{\"name\":\"Annals of Applied Biology\",\"volume\":\"186 2\",\"pages\":\"204-215\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/aab.12959\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/aab.12959\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Biology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/aab.12959","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

现代农业生态系统可以引入开花植物,以支持保护性生物防治(CBC)背景下的常驻天敌。荞麦(Fagopyrum esculentum)(蓼科:蓼科)已被证明可以通过提供高质量和易于获取的花蜜来延长几种寄生蜂的寿命。然而,花蜜是无处不在的微生物定殖,可以改变花蜜的化学与后果的寄生蜂。尽管如此,与荞麦花蜜相关的细菌如何影响寄生蜂的表现尚不清楚。本研究利用荞麦花蜜中分离的14株细菌发酵合成的花蜜,对两种寄生蜂(半翅目:五角蜂科)和基底三翅虫(膜翅目:蜂科)的成年雌性进行了研究。记录了细菌发酵对雌蜂寿命和花蜜化学的影响。雌性基底夜蛾食用芽孢杆菌、短芽孢杆菌、短芽孢杆菌、内生糖芽孢杆菌和嗜糖Terribacillus Saccharibacillus ophilus发酵的花蜜显著延长了雌性基底夜蛾的寿命。对于远端杀虫而言,只有在冷小虫和泛藻中才有延长寿命的记录。对于这两种寄生蜂,没有记录到由于细菌发酵花蜜而产生的负面影响。细菌发酵花蜜的化学研究表明,糖和糖醇组成的多样性增加,而非发酵花蜜只含有蔗糖。我们的研究结果表明,寄生在花蜜中的细菌在花与拟寄生物之间的相互作用中是重要的“隐藏参与者”,这表明更好地了解植物-微生物-昆虫的相互作用可以改善CBC计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nectar-inhabiting bacteria differently affect the longevity of co-occurring egg parasitoid species by modifying nectar chemistry

Nectar-inhabiting bacteria differently affect the longevity of co-occurring egg parasitoid species by modifying nectar chemistry

Flowering plants can be introduced in modern agroecosystems to support resident natural enemies in the context of Conservation Biological Control (CBC). Buckwheat (Fagopyrum esculentum) (Polygonales: Polygonaceae) has been shown to enhance the longevity of several parasitoids through the provision of high quality and easily accessible floral nectar. Yet floral nectar is ubiquitously colonized by microbes which can change nectar chemistry with consequences for parasitoids. Nonetheless, how bacteria associated with buckwheat floral nectar affect parasitoid performance is not known. In this study, adult females of Trissolcus basalis (Hymenoptera: Scelionidae) and Ooencyrtus telenomicida (Hymenoptera: Encyrtidae), two parasitoids of Nezara viridula (Hemiptera: Pentatomidae), were provided with synthetic nectar fermented by 14 bacterial isolates originating from buckwheat nectar. We recorded the effect of bacterial fermentation on female longevity and nectar chemistry. In the case of T. basalis, females consuming nectar fermented by Bacillus sp., Brevibacillus sp., Brevibacterium frigoritolerans, Saccharibacillus endophyticus, and Terribacillus saccharophilus significantly enhanced their longevity compared with females fed with non-fermented nectar. For O. telenomicida, enhanced longevity was recorded only in the case of B. frigoritolerans and Pantoea dispersa. For both parasitoids, no negative effects due to bacterial fermentation of nectar were recorded. Chemical investigations of bacteria-fermented nectars revealed an increased diversity in the composition of sugars and sugar alcohols, whereas non-fermented nectar only contained sucrose. Our findings show that nectar-inhabiting bacteria are important “hidden players” in the interactions between flowers and parasitoids, an indication that a better understanding of plant–microbe–insect interactions could improve CBC programmes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Biology
Annals of Applied Biology 生物-农业综合
CiteScore
5.50
自引率
0.00%
发文量
71
审稿时长
18-36 weeks
期刊介绍: Annals of Applied Biology is an international journal sponsored by the Association of Applied Biologists. The journal publishes original research papers on all aspects of applied research on crop production, crop protection and the cropping ecosystem. The journal is published both online and in six printed issues per year. Annals papers must contribute substantially to the advancement of knowledge and may, among others, encompass the scientific disciplines of: Agronomy Agrometeorology Agrienvironmental sciences Applied genomics Applied metabolomics Applied proteomics Biodiversity Biological control Climate change Crop ecology Entomology Genetic manipulation Molecular biology Mycology Nematology Pests Plant pathology Plant breeding & genetics Plant physiology Post harvest biology Soil science Statistics Virology Weed biology Annals also welcomes reviews of interest in these subject areas. Reviews should be critical surveys of the field and offer new insights. All papers are subject to peer review. Papers must usually contribute substantially to the advancement of knowledge in applied biology but short papers discussing techniques or substantiated results, and reviews of current knowledge of interest to applied biologists will be considered for publication. Papers or reviews must not be offered to any other journal for prior or simultaneous publication and normally average seven printed pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信