矩阵加权besov型和triiebel - lizorkin型空间II:几乎对角算子的锐有界性

IF 1 2区 数学 Q1 MATHEMATICS
Fan Bu, Tuomas Hytönen, Dachun Yang, Wen Yuan
{"title":"矩阵加权besov型和triiebel - lizorkin型空间II:几乎对角算子的锐有界性","authors":"Fan Bu,&nbsp;Tuomas Hytönen,&nbsp;Dachun Yang,&nbsp;Wen Yuan","doi":"10.1112/jlms.70094","DOIUrl":null,"url":null,"abstract":"<p>This article is the second one of three successive articles of the authors on the matrix-weighted Besov-type and Triebel–Lizorkin-type spaces. In this article, we obtain the sharp boundedness of almost diagonal operators on matrix-weighted Besov-type and Triebel–Lizorkin-type sequence spaces. These results not only possess broad generality but also improve several existing related results in various special cases covered by this family of spaces. This improvement depends, on the one hand, on the notion of <span></span><math>\n <semantics>\n <msub>\n <mi>A</mi>\n <mi>p</mi>\n </msub>\n <annotation>$A_p$</annotation>\n </semantics></math>-dimensions of matrix weights and their properties introduced in the first article of this series and, on the other hand, on a careful direct analysis of sequences of averages avoiding maximal operators. While a recent matrix-weighted extension of the Fefferman–Stein vector-valued maximal inequality would provide an alternative route to some of our results in the restricted range of function space parameters <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>q</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$p,q\\in (1,\\infty)$</annotation>\n </semantics></math>, our approach covers the full scale of exponents <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$p\\in (0,\\infty)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>]</mo>\n </mrow>\n <annotation>$q\\in (0,\\infty]$</annotation>\n </semantics></math> that is relevant in the theory of function spaces.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matrix-weighted Besov-type and Triebel–Lizorkin-type spaces II: Sharp boundedness of almost diagonal operators\",\"authors\":\"Fan Bu,&nbsp;Tuomas Hytönen,&nbsp;Dachun Yang,&nbsp;Wen Yuan\",\"doi\":\"10.1112/jlms.70094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article is the second one of three successive articles of the authors on the matrix-weighted Besov-type and Triebel–Lizorkin-type spaces. In this article, we obtain the sharp boundedness of almost diagonal operators on matrix-weighted Besov-type and Triebel–Lizorkin-type sequence spaces. These results not only possess broad generality but also improve several existing related results in various special cases covered by this family of spaces. This improvement depends, on the one hand, on the notion of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>A</mi>\\n <mi>p</mi>\\n </msub>\\n <annotation>$A_p$</annotation>\\n </semantics></math>-dimensions of matrix weights and their properties introduced in the first article of this series and, on the other hand, on a careful direct analysis of sequences of averages avoiding maximal operators. While a recent matrix-weighted extension of the Fefferman–Stein vector-valued maximal inequality would provide an alternative route to some of our results in the restricted range of function space parameters <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$p,q\\\\in (1,\\\\infty)$</annotation>\\n </semantics></math>, our approach covers the full scale of exponents <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$p\\\\in (0,\\\\infty)$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$q\\\\in (0,\\\\infty]$</annotation>\\n </semantics></math> that is relevant in the theory of function spaces.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70094\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70094","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文是作者关于矩阵加权besov型和triiebel - lizorkin型空间的连续三篇文章中的第二篇。在矩阵加权的besov型和triiebel - lizorkin型序列空间上,我们得到了几乎对角算子的尖锐有界性。这些结果不仅具有广泛的通用性,而且改进了该空间族所涵盖的各种特殊情况下已有的几个相关结果。这种改进一方面依赖于本系列第一篇文章中介绍的A p $A_p$ -矩阵权重维度及其性质的概念,另一方面依赖于对避免极大运算符的平均序列的仔细直接分析。虽然最近对Fefferman-Stein向量值极大不等式的矩阵加权扩展将为我们在函数空间参数p, q∈(1,∞)$p,q\in (1,\infty)$的受限范围内的一些结果提供另一种途径,我们的方法涵盖了指数p∈(0,∞)$p\in (0,\infty)$和q∈(0,∞]$q\in (0,\infty]$在函数空间理论中是相关的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matrix-weighted Besov-type and Triebel–Lizorkin-type spaces II: Sharp boundedness of almost diagonal operators

This article is the second one of three successive articles of the authors on the matrix-weighted Besov-type and Triebel–Lizorkin-type spaces. In this article, we obtain the sharp boundedness of almost diagonal operators on matrix-weighted Besov-type and Triebel–Lizorkin-type sequence spaces. These results not only possess broad generality but also improve several existing related results in various special cases covered by this family of spaces. This improvement depends, on the one hand, on the notion of A p $A_p$ -dimensions of matrix weights and their properties introduced in the first article of this series and, on the other hand, on a careful direct analysis of sequences of averages avoiding maximal operators. While a recent matrix-weighted extension of the Fefferman–Stein vector-valued maximal inequality would provide an alternative route to some of our results in the restricted range of function space parameters p , q ( 1 , ) $p,q\in (1,\infty)$ , our approach covers the full scale of exponents p ( 0 , ) $p\in (0,\infty)$ and q ( 0 , ] $q\in (0,\infty]$ that is relevant in the theory of function spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信