Umay Sevgi Vardar, Johannes H. Bitter, Constantinos V. Nikiforidis
{"title":"亲脂性物质从脂滴(油小体)到脂双分子层的极性选择性转移。接口5/2025)","authors":"Umay Sevgi Vardar, Johannes H. Bitter, Constantinos V. Nikiforidis","doi":"10.1002/admi.202570014","DOIUrl":null,"url":null,"abstract":"<p><b>Lipid Droplet Carriers</b></p><p>The article 2400600 by Constantinos V. Nikiforidis and co-workers describe the transportation of lipophilic cargoes from Lipid Droplets (LDs) to lipid bilayers using liposomes. LDs loaded with curcumin and Nile red showed selective transfer, with only curcumin moving to liposomes due to its amphiphilicity. Understanding the transport mechanisms from LDs to lipid bilayers will aid their use as natural lipid carriers.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 5","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202570014","citationCount":"0","resultStr":"{\"title\":\"Polarity-selective Transfer of Lipophilic Cargoes From Lipid Droplets (Oleosomes) to Lipid Bilayers (Adv. Mater. Interfaces 5/2025)\",\"authors\":\"Umay Sevgi Vardar, Johannes H. Bitter, Constantinos V. Nikiforidis\",\"doi\":\"10.1002/admi.202570014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Lipid Droplet Carriers</b></p><p>The article 2400600 by Constantinos V. Nikiforidis and co-workers describe the transportation of lipophilic cargoes from Lipid Droplets (LDs) to lipid bilayers using liposomes. LDs loaded with curcumin and Nile red showed selective transfer, with only curcumin moving to liposomes due to its amphiphilicity. Understanding the transport mechanisms from LDs to lipid bilayers will aid their use as natural lipid carriers.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"12 5\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202570014\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admi.202570014\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202570014","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
脂滴载体Constantinos V. Nikiforidis及其同事的文章2400600描述了利用脂质体将亲脂性物质从脂滴(ld)运输到脂双分子层。负载姜黄素和尼罗河红的ld表现出选择性转移,由于其两亲性,只有姜黄素转移到脂质体中。了解从ld到脂质双分子层的运输机制将有助于它们作为天然脂质载体的使用。
Polarity-selective Transfer of Lipophilic Cargoes From Lipid Droplets (Oleosomes) to Lipid Bilayers (Adv. Mater. Interfaces 5/2025)
Lipid Droplet Carriers
The article 2400600 by Constantinos V. Nikiforidis and co-workers describe the transportation of lipophilic cargoes from Lipid Droplets (LDs) to lipid bilayers using liposomes. LDs loaded with curcumin and Nile red showed selective transfer, with only curcumin moving to liposomes due to its amphiphilicity. Understanding the transport mechanisms from LDs to lipid bilayers will aid their use as natural lipid carriers.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.