一维非均匀光子环路波导网络的理论设计与传输分析

IF 0.9 4区 物理与天体物理 Q4 PHYSICS, CONDENSED MATTER
El-Aouni Mimoun, Ben-Ali Youssef, Rahou Zakarea, Bria Driss
{"title":"一维非均匀光子环路波导网络的理论设计与传输分析","authors":"El-Aouni Mimoun,&nbsp;Ben-Ali Youssef,&nbsp;Rahou Zakarea,&nbsp;Bria Driss","doi":"10.1134/S106378342460208X","DOIUrl":null,"url":null,"abstract":"<p>We present a theoretical design for a photonic structure based on one-dimensional inhomogeneous p-erfect and defect loop waveguide network. The structure is composed of a segment of length <i>d</i><sub>1</sub> (where <i>d</i><sub>1</sub> = <span>\\(d_{1}^{'} + d_{1}^{{''}}\\)</span>) connected to a loop of lengths <i>d</i><sub>2</sub> and <i>d</i><sub>3</sub> (where <i>d</i><sub>2</sub> = <span>\\(d_{2}^{'} + d_{2}^{{''}}\\)</span> and <i>d</i><sub>3</sub> = <span>\\(d_{3}^{'} + d_{3}^{{''}}\\)</span>) and the permittivity of each piece of length <i>d</i><sub><i>i</i></sub> (<i>i</i> = 1, 2, 3) is different. We calculate the dispersion relation and transmission coefficient using the Green function method based on the interface response theory. The perfect loop waveguide generates photonic bandgaps depending on the number of cells and the structure parameters. The insertion of a defect in the structure generates defect modes inside the gaps. These defect modes can be precisely controlled in terms of frequency and transmission rate by tuning the length and permittivity of the defective segment. The proposed structure offers promising potential for the development of advanced photonic filters and other photonic devices.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"67 2","pages":"91 - 99"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical Design and Transmission Analysis of a One-Dimensional Inhomogeneous Photonic Loop Waveguide Network\",\"authors\":\"El-Aouni Mimoun,&nbsp;Ben-Ali Youssef,&nbsp;Rahou Zakarea,&nbsp;Bria Driss\",\"doi\":\"10.1134/S106378342460208X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a theoretical design for a photonic structure based on one-dimensional inhomogeneous p-erfect and defect loop waveguide network. The structure is composed of a segment of length <i>d</i><sub>1</sub> (where <i>d</i><sub>1</sub> = <span>\\\\(d_{1}^{'} + d_{1}^{{''}}\\\\)</span>) connected to a loop of lengths <i>d</i><sub>2</sub> and <i>d</i><sub>3</sub> (where <i>d</i><sub>2</sub> = <span>\\\\(d_{2}^{'} + d_{2}^{{''}}\\\\)</span> and <i>d</i><sub>3</sub> = <span>\\\\(d_{3}^{'} + d_{3}^{{''}}\\\\)</span>) and the permittivity of each piece of length <i>d</i><sub><i>i</i></sub> (<i>i</i> = 1, 2, 3) is different. We calculate the dispersion relation and transmission coefficient using the Green function method based on the interface response theory. The perfect loop waveguide generates photonic bandgaps depending on the number of cells and the structure parameters. The insertion of a defect in the structure generates defect modes inside the gaps. These defect modes can be precisely controlled in terms of frequency and transmission rate by tuning the length and permittivity of the defective segment. The proposed structure offers promising potential for the development of advanced photonic filters and other photonic devices.</p>\",\"PeriodicalId\":731,\"journal\":{\"name\":\"Physics of the Solid State\",\"volume\":\"67 2\",\"pages\":\"91 - 99\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Solid State\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S106378342460208X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Solid State","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S106378342460208X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于一维非均匀p-完美和缺陷环波导网络的光子结构的理论设计。该结构由长度为d1的线段(其中d1 = \(d_{1}^{'} + d_{1}^{{''}}\))连接到长度为d2和d3的回路(其中d2 = \(d_{2}^{'} + d_{2}^{{''}}\)和d3 = \(d_{3}^{'} + d_{3}^{{''}}\))组成,并且每段长度为di (i = 1,2,3)的介电常数不同。采用基于界面响应理论的格林函数法计算了色散关系和透射系数。完美的环形波导产生光子带隙取决于单元数和结构参数。在结构中插入缺陷会在间隙内产生缺陷模态。通过调整缺陷段的长度和介电常数,可以精确地控制这些缺陷模式的频率和传输速率。所提出的结构为先进光子滤波器和其他光子器件的发展提供了良好的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Theoretical Design and Transmission Analysis of a One-Dimensional Inhomogeneous Photonic Loop Waveguide Network

Theoretical Design and Transmission Analysis of a One-Dimensional Inhomogeneous Photonic Loop Waveguide Network

We present a theoretical design for a photonic structure based on one-dimensional inhomogeneous p-erfect and defect loop waveguide network. The structure is composed of a segment of length d1 (where d1 = \(d_{1}^{'} + d_{1}^{{''}}\)) connected to a loop of lengths d2 and d3 (where d2 = \(d_{2}^{'} + d_{2}^{{''}}\) and d3 = \(d_{3}^{'} + d_{3}^{{''}}\)) and the permittivity of each piece of length di (i = 1, 2, 3) is different. We calculate the dispersion relation and transmission coefficient using the Green function method based on the interface response theory. The perfect loop waveguide generates photonic bandgaps depending on the number of cells and the structure parameters. The insertion of a defect in the structure generates defect modes inside the gaps. These defect modes can be precisely controlled in terms of frequency and transmission rate by tuning the length and permittivity of the defective segment. The proposed structure offers promising potential for the development of advanced photonic filters and other photonic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics of the Solid State
Physics of the Solid State 物理-物理:凝聚态物理
CiteScore
1.70
自引率
0.00%
发文量
60
审稿时长
2-4 weeks
期刊介绍: Presents the latest results from Russia’s leading researchers in condensed matter physics at the Russian Academy of Sciences and other prestigious institutions. Covers all areas of solid state physics including solid state optics, solid state acoustics, electronic and vibrational spectra, phase transitions, ferroelectricity, magnetism, and superconductivity. Also presents review papers on the most important problems in solid state physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信