mof衍生碳包覆NiS/NiS2蛋黄壳球是一种理想的杂化超级电容器正极材料

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Jing Wang, Shuo Li, Ning Fu, Dayong Tian, Yong Zheng, Fang Wang, Chao Liu, Xiaolong Wang, Zhongyuan Zhou, Yongsheng Niu, Hao Liu, Guoxiu Wang, Shichun Mu, Jiahuan Luo
{"title":"mof衍生碳包覆NiS/NiS2蛋黄壳球是一种理想的杂化超级电容器正极材料","authors":"Jing Wang,&nbsp;Shuo Li,&nbsp;Ning Fu,&nbsp;Dayong Tian,&nbsp;Yong Zheng,&nbsp;Fang Wang,&nbsp;Chao Liu,&nbsp;Xiaolong Wang,&nbsp;Zhongyuan Zhou,&nbsp;Yongsheng Niu,&nbsp;Hao Liu,&nbsp;Guoxiu Wang,&nbsp;Shichun Mu,&nbsp;Jiahuan Luo","doi":"10.1007/s42114-025-01257-6","DOIUrl":null,"url":null,"abstract":"<div><p>Optimizing the performance of electrode materials to improve the energy density of supercapacitors is the focus of current research. Construction and design with complex yolk-shell structure, as a supercapacitor electrode material, are of great significance and challenging. Herein, a self-sacrificing template strategy was used to construct uniform carbon-modified NiS/NiS<sub>2</sub> yolk-shell spheres using a Ni-based metal–organic framework (Ni-soc-MOF) as the precursors. Especially, the carbon shells produced by the pyrolysis of the organic ligand can improve mechanical stability and electron conductivity. Therefore, the as-obtained NiS/NiS<sub>2</sub>@C nanocomposites display a high specific capacity (1082 C g<sup>−1</sup>at 1 A g<sup>−1</sup>) and outstanding cycling stability (85% capacity retention after 5000 cycles). In addition, a hybrid supercapacitor device based on the yolk-shell NiS/NiS<sub>2</sub>@C nanocomposite and porous carbon can deliver a high energy density of 56.2 Wh kg<sup>−1</sup> at 800 W kg<sup>−1</sup>, while exhibiting an excellent capacity retention of 86% after 10,000 charge/discharge cycles, demonstrating the promising potential of yolk-shell NiS/NiS<sub>2</sub>@C nanocomposites via Ni-soc-MOF-derived route in practical application.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 2","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-025-01257-6.pdf","citationCount":"0","resultStr":"{\"title\":\"MOF-derived carbon-coated NiS/NiS2 yolk-shell spheres as a satisfactory positive electrode material for hybrid supercapacitors\",\"authors\":\"Jing Wang,&nbsp;Shuo Li,&nbsp;Ning Fu,&nbsp;Dayong Tian,&nbsp;Yong Zheng,&nbsp;Fang Wang,&nbsp;Chao Liu,&nbsp;Xiaolong Wang,&nbsp;Zhongyuan Zhou,&nbsp;Yongsheng Niu,&nbsp;Hao Liu,&nbsp;Guoxiu Wang,&nbsp;Shichun Mu,&nbsp;Jiahuan Luo\",\"doi\":\"10.1007/s42114-025-01257-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Optimizing the performance of electrode materials to improve the energy density of supercapacitors is the focus of current research. Construction and design with complex yolk-shell structure, as a supercapacitor electrode material, are of great significance and challenging. Herein, a self-sacrificing template strategy was used to construct uniform carbon-modified NiS/NiS<sub>2</sub> yolk-shell spheres using a Ni-based metal–organic framework (Ni-soc-MOF) as the precursors. Especially, the carbon shells produced by the pyrolysis of the organic ligand can improve mechanical stability and electron conductivity. Therefore, the as-obtained NiS/NiS<sub>2</sub>@C nanocomposites display a high specific capacity (1082 C g<sup>−1</sup>at 1 A g<sup>−1</sup>) and outstanding cycling stability (85% capacity retention after 5000 cycles). In addition, a hybrid supercapacitor device based on the yolk-shell NiS/NiS<sub>2</sub>@C nanocomposite and porous carbon can deliver a high energy density of 56.2 Wh kg<sup>−1</sup> at 800 W kg<sup>−1</sup>, while exhibiting an excellent capacity retention of 86% after 10,000 charge/discharge cycles, demonstrating the promising potential of yolk-shell NiS/NiS<sub>2</sub>@C nanocomposites via Ni-soc-MOF-derived route in practical application.</p></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":\"8 2\",\"pages\":\"\"},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42114-025-01257-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-025-01257-6\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-025-01257-6","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

优化电极材料性能以提高超级电容器的能量密度是当前研究的热点。复杂的蛋黄壳结构作为一种超级电容器电极材料,其构造和设计具有重要的意义和挑战性。本文采用自我牺牲模板策略,以ni基金属有机骨架(Ni-soc-MOF)为前驱体,构建了均匀碳修饰的NiS/NiS2黄壳球。特别是有机配体热解生成的碳壳可以提高机械稳定性和电子导电性。因此,获得的NiS/NiS2@C纳米复合材料具有高比容量(1082℃g−1at 1a g−1)和出色的循环稳定性(循环5000次后容量保持85%)。此外,基于蛋黄壳NiS/NiS2@C纳米复合材料和多孔碳的混合超级电容器器件在800 W kg - 1时可以提供56.2 Wh kg - 1的高能量密度,同时在10,000次充放电循环后表现出86%的优异容量保持率,证明了蛋黄壳NiS/NiS2@C纳米复合材料通过ni -soc- mof衍生途径在实际应用中的良好潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MOF-derived carbon-coated NiS/NiS2 yolk-shell spheres as a satisfactory positive electrode material for hybrid supercapacitors

Optimizing the performance of electrode materials to improve the energy density of supercapacitors is the focus of current research. Construction and design with complex yolk-shell structure, as a supercapacitor electrode material, are of great significance and challenging. Herein, a self-sacrificing template strategy was used to construct uniform carbon-modified NiS/NiS2 yolk-shell spheres using a Ni-based metal–organic framework (Ni-soc-MOF) as the precursors. Especially, the carbon shells produced by the pyrolysis of the organic ligand can improve mechanical stability and electron conductivity. Therefore, the as-obtained NiS/NiS2@C nanocomposites display a high specific capacity (1082 C g−1at 1 A g−1) and outstanding cycling stability (85% capacity retention after 5000 cycles). In addition, a hybrid supercapacitor device based on the yolk-shell NiS/NiS2@C nanocomposite and porous carbon can deliver a high energy density of 56.2 Wh kg−1 at 800 W kg−1, while exhibiting an excellent capacity retention of 86% after 10,000 charge/discharge cycles, demonstrating the promising potential of yolk-shell NiS/NiS2@C nanocomposites via Ni-soc-MOF-derived route in practical application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信