模拟微重力对牙髓干细胞干性的影响

IF 2.2 4区 生物学 Q3 CELL BIOLOGY
Huailong Hou, Zhengjun Qiu, Jingyi Che, Yanping Li, Jingxuan Sun, Weiwei Zhang, Jinjie Ma, Shuang Zhang, Mengdi Li, Yumei Niu, Lina He
{"title":"模拟微重力对牙髓干细胞干性的影响","authors":"Huailong Hou,&nbsp;Zhengjun Qiu,&nbsp;Jingyi Che,&nbsp;Yanping Li,&nbsp;Jingxuan Sun,&nbsp;Weiwei Zhang,&nbsp;Jinjie Ma,&nbsp;Shuang Zhang,&nbsp;Mengdi Li,&nbsp;Yumei Niu,&nbsp;Lina He","doi":"10.1007/s10735-025-10377-8","DOIUrl":null,"url":null,"abstract":"<div><p>Dental pulp stem cells (DPSCs), a subset of tooth-derived mesenchymal stem cells (MSCs), demonstrate significant promise in clinical stem cell therapy. However, prolonged in vitro expansion commonly results in compromised stemness, limiting therapeutic efficacy. Thus, maintaining the stemness of DPSCs during expansion and culture is a key challenge for regenerative medicine. In the current study, the impact of simulated microgravity (SMG) on DPSC stemness was investigated using the three-dimensional clinostat Cellspace-3D. After SMG treatment for 3 days, DPSCs demonstrated markedly enhanced replicative activity, proliferation efficiency, self-renewal capacity, and effective inhibition of the senescence process. Under specific differentiation induction conditions, DPSCs in the SMG group exhibited superior osteogenic, adipogenic, chondrogenic, and neural differentiation potentials. Additionally, DPSCs exhibited higher expression levels of the MSC surface markers Stro-1 and CD146 and stemness maintenance-related genes Oct4, Nanog, and Sox2 in the SMG group compared to those from the normal gravity (NG) group. To elucidate the potential molecular mechanisms by which SMG influences the stemness of DPSCs, transcriptome sequencing of total RNA was performed, and identified that differentially expressed genes (DEGs) are closely associated with the MAPK signaling pathway. Further verification experiments demonstrated that the MAPK/ERK signaling pathway was activated in the SMG group. In conclusion, SMG effectively maintains the stemness of DPSCs cultivated in vitro, and its mechanism of action may be associated with the activation of the MAPK/ERK signaling pathway.</p></div>","PeriodicalId":650,"journal":{"name":"Journal of Molecular Histology","volume":"56 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of simulated microgravity on dental pulp stem cell stemness\",\"authors\":\"Huailong Hou,&nbsp;Zhengjun Qiu,&nbsp;Jingyi Che,&nbsp;Yanping Li,&nbsp;Jingxuan Sun,&nbsp;Weiwei Zhang,&nbsp;Jinjie Ma,&nbsp;Shuang Zhang,&nbsp;Mengdi Li,&nbsp;Yumei Niu,&nbsp;Lina He\",\"doi\":\"10.1007/s10735-025-10377-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dental pulp stem cells (DPSCs), a subset of tooth-derived mesenchymal stem cells (MSCs), demonstrate significant promise in clinical stem cell therapy. However, prolonged in vitro expansion commonly results in compromised stemness, limiting therapeutic efficacy. Thus, maintaining the stemness of DPSCs during expansion and culture is a key challenge for regenerative medicine. In the current study, the impact of simulated microgravity (SMG) on DPSC stemness was investigated using the three-dimensional clinostat Cellspace-3D. After SMG treatment for 3 days, DPSCs demonstrated markedly enhanced replicative activity, proliferation efficiency, self-renewal capacity, and effective inhibition of the senescence process. Under specific differentiation induction conditions, DPSCs in the SMG group exhibited superior osteogenic, adipogenic, chondrogenic, and neural differentiation potentials. Additionally, DPSCs exhibited higher expression levels of the MSC surface markers Stro-1 and CD146 and stemness maintenance-related genes Oct4, Nanog, and Sox2 in the SMG group compared to those from the normal gravity (NG) group. To elucidate the potential molecular mechanisms by which SMG influences the stemness of DPSCs, transcriptome sequencing of total RNA was performed, and identified that differentially expressed genes (DEGs) are closely associated with the MAPK signaling pathway. Further verification experiments demonstrated that the MAPK/ERK signaling pathway was activated in the SMG group. In conclusion, SMG effectively maintains the stemness of DPSCs cultivated in vitro, and its mechanism of action may be associated with the activation of the MAPK/ERK signaling pathway.</p></div>\",\"PeriodicalId\":650,\"journal\":{\"name\":\"Journal of Molecular Histology\",\"volume\":\"56 2\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Histology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10735-025-10377-8\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Histology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10735-025-10377-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

牙髓干细胞(DPSCs)是牙源性间充质干细胞(MSCs)的一个分支,在临床干细胞治疗中具有重要的应用前景。然而,长时间的体外扩增通常会导致茎干受损,限制了治疗效果。因此,在扩增和培养过程中保持DPSCs的干性是再生医学的关键挑战。在本研究中,模拟微重力(SMG)对DPSC干性的影响研究使用三维斜定子Cellspace-3D。经SMG处理3天后,DPSCs的复制活性、增殖效率、自我更新能力显著增强,并有效抑制衰老过程。在特定的分化诱导条件下,SMG组的DPSCs表现出更强的成骨、成脂、成软骨和神经分化潜能。此外,与正常重力(NG)组相比,SMG组的DPSCs表现出更高的MSC表面标记物Stro-1和CD146以及干细胞维持相关基因Oct4, Nanog和Sox2的表达水平。为了阐明SMG影响DPSCs干性的潜在分子机制,研究人员对总RNA进行了转录组测序,发现差异表达基因(DEGs)与MAPK信号通路密切相关。进一步的验证实验表明,SMG组的MAPK/ERK信号通路被激活。综上所述,SMG能有效维持体外培养的DPSCs的干性,其作用机制可能与MAPK/ERK信号通路的激活有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of simulated microgravity on dental pulp stem cell stemness

Dental pulp stem cells (DPSCs), a subset of tooth-derived mesenchymal stem cells (MSCs), demonstrate significant promise in clinical stem cell therapy. However, prolonged in vitro expansion commonly results in compromised stemness, limiting therapeutic efficacy. Thus, maintaining the stemness of DPSCs during expansion and culture is a key challenge for regenerative medicine. In the current study, the impact of simulated microgravity (SMG) on DPSC stemness was investigated using the three-dimensional clinostat Cellspace-3D. After SMG treatment for 3 days, DPSCs demonstrated markedly enhanced replicative activity, proliferation efficiency, self-renewal capacity, and effective inhibition of the senescence process. Under specific differentiation induction conditions, DPSCs in the SMG group exhibited superior osteogenic, adipogenic, chondrogenic, and neural differentiation potentials. Additionally, DPSCs exhibited higher expression levels of the MSC surface markers Stro-1 and CD146 and stemness maintenance-related genes Oct4, Nanog, and Sox2 in the SMG group compared to those from the normal gravity (NG) group. To elucidate the potential molecular mechanisms by which SMG influences the stemness of DPSCs, transcriptome sequencing of total RNA was performed, and identified that differentially expressed genes (DEGs) are closely associated with the MAPK signaling pathway. Further verification experiments demonstrated that the MAPK/ERK signaling pathway was activated in the SMG group. In conclusion, SMG effectively maintains the stemness of DPSCs cultivated in vitro, and its mechanism of action may be associated with the activation of the MAPK/ERK signaling pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Histology
Journal of Molecular Histology 生物-细胞生物学
CiteScore
5.90
自引率
0.00%
发文量
68
审稿时长
1 months
期刊介绍: The Journal of Molecular Histology publishes results of original research on the localization and expression of molecules in animal cells, tissues and organs. Coverage includes studies describing novel cellular or ultrastructural distributions of molecules which provide insight into biochemical or physiological function, development, histologic structure and disease processes. Major research themes of particular interest include: - Cell-Cell and Cell-Matrix Interactions; - Connective Tissues; - Development and Disease; - Neuroscience. Please note that the Journal of Molecular Histology does not consider manuscripts dealing with the application of immunological or other probes on non-standard laboratory animal models unless the results are clearly of significant and general biological importance. The Journal of Molecular Histology publishes full-length original research papers, review articles, short communications and letters to the editors. All manuscripts are typically reviewed by two independent referees. The Journal of Molecular Histology is a continuation of The Histochemical Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信