Aihua Yi, Yuying Liu, Jian Huang, Jianyong Liu, Xiaolan Chen, Min Wang and Jingfeng Xie
{"title":"铝合金上导电纳米zno掺杂Ti/Zr复合转化涂层的制备与表征","authors":"Aihua Yi, Yuying Liu, Jian Huang, Jianyong Liu, Xiaolan Chen, Min Wang and Jingfeng Xie","doi":"10.1039/D4RA06350C","DOIUrl":null,"url":null,"abstract":"<p >The integration of semiconductive nano-ZnO into a Ti/Zr-based solution has facilitated the development of a conductive coating on aluminum alloy surfaces. A comprehensive characterization of the coating's morphology, microstructure, electrical conductivity, and corrosion resistance was conducted utilizing a suite of analytical techniques, including SEM, FIB-SEM, EDS, XPS, UV-vis, FTIR, and an electrochemical workstation. Significantly, the electrical contact resistance (ECR) of the coating experienced a substantial decrease when subjected to a pressure of 200 psi, plummeting from 0.1907 Ω in<small><sup>−2</sup></small> in the absence of nano-ZnO to 0.0621 Ω in<small><sup>−2</sup></small> with the inclusion of nano-ZnO. Concurrently, the band gap of the coating was observed to diminish from 3.189 eV without nano-ZnO to 2.708 eV with nano-ZnO, indicating improved semiconductor properties. The coating exhibited a three-layer structure consisting of a substrate-close layer of nano-ZnO, a middle layer composed of Na<small><sub>3</sub></small>AlF<small><sub>6</sub></small> crystals, and an outermost layer comprising ZnO and metal–organic complexes. The incorporation of nano-ZnO induced a striking morphological transition from a pebble-like to a cubic structure, along with a notable change in the coating's color. These findings collectively demonstrate the transformative impact of nano-ZnO on the multifaceted attributes of the conversion coating, endowing it with superior electrical characteristics.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 9","pages":" 6564-6573"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d4ra06350c?page=search","citationCount":"0","resultStr":"{\"title\":\"Preparation and characterization of electrically conductive nano-ZnO-doped Ti/Zr composite conversion coating on aluminum alloy\",\"authors\":\"Aihua Yi, Yuying Liu, Jian Huang, Jianyong Liu, Xiaolan Chen, Min Wang and Jingfeng Xie\",\"doi\":\"10.1039/D4RA06350C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The integration of semiconductive nano-ZnO into a Ti/Zr-based solution has facilitated the development of a conductive coating on aluminum alloy surfaces. A comprehensive characterization of the coating's morphology, microstructure, electrical conductivity, and corrosion resistance was conducted utilizing a suite of analytical techniques, including SEM, FIB-SEM, EDS, XPS, UV-vis, FTIR, and an electrochemical workstation. Significantly, the electrical contact resistance (ECR) of the coating experienced a substantial decrease when subjected to a pressure of 200 psi, plummeting from 0.1907 Ω in<small><sup>−2</sup></small> in the absence of nano-ZnO to 0.0621 Ω in<small><sup>−2</sup></small> with the inclusion of nano-ZnO. Concurrently, the band gap of the coating was observed to diminish from 3.189 eV without nano-ZnO to 2.708 eV with nano-ZnO, indicating improved semiconductor properties. The coating exhibited a three-layer structure consisting of a substrate-close layer of nano-ZnO, a middle layer composed of Na<small><sub>3</sub></small>AlF<small><sub>6</sub></small> crystals, and an outermost layer comprising ZnO and metal–organic complexes. The incorporation of nano-ZnO induced a striking morphological transition from a pebble-like to a cubic structure, along with a notable change in the coating's color. These findings collectively demonstrate the transformative impact of nano-ZnO on the multifaceted attributes of the conversion coating, endowing it with superior electrical characteristics.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 9\",\"pages\":\" 6564-6573\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d4ra06350c?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d4ra06350c\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d4ra06350c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Preparation and characterization of electrically conductive nano-ZnO-doped Ti/Zr composite conversion coating on aluminum alloy
The integration of semiconductive nano-ZnO into a Ti/Zr-based solution has facilitated the development of a conductive coating on aluminum alloy surfaces. A comprehensive characterization of the coating's morphology, microstructure, electrical conductivity, and corrosion resistance was conducted utilizing a suite of analytical techniques, including SEM, FIB-SEM, EDS, XPS, UV-vis, FTIR, and an electrochemical workstation. Significantly, the electrical contact resistance (ECR) of the coating experienced a substantial decrease when subjected to a pressure of 200 psi, plummeting from 0.1907 Ω in−2 in the absence of nano-ZnO to 0.0621 Ω in−2 with the inclusion of nano-ZnO. Concurrently, the band gap of the coating was observed to diminish from 3.189 eV without nano-ZnO to 2.708 eV with nano-ZnO, indicating improved semiconductor properties. The coating exhibited a three-layer structure consisting of a substrate-close layer of nano-ZnO, a middle layer composed of Na3AlF6 crystals, and an outermost layer comprising ZnO and metal–organic complexes. The incorporation of nano-ZnO induced a striking morphological transition from a pebble-like to a cubic structure, along with a notable change in the coating's color. These findings collectively demonstrate the transformative impact of nano-ZnO on the multifaceted attributes of the conversion coating, endowing it with superior electrical characteristics.
期刊介绍:
An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.